LLPs at ATLAS: Recent Results & Perspective

Julia Gonski

9 November 2021

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Outline

1. Overview of the ATLAS LLP search program

2. Recent Run 2 public results

- Disappearing track
- Exotics Higgs to LLPs
- Stopped particles
- Displaced vertices in the muon spectrometer

3. Looking forward

- Combinations
- Search ideas
- Run 3 & HL-LHC

LLP Searches at ATLAS

Organization of analyses:

- SUSY group: R-parity violating/long-lived (RPVLL)
- Exotics group: Unusual signatures and Exotic Higgs (UEH)
- Key signatures that we need to recognize:
 - Displacements: single objects or vertices
 - Timing
 - Ionization (non-MIP particles)

• Key exclusion parameters:

- LLP mass(es)
- LLP lifetime
- Production cross section (parent branching ratio)

COLUMBIA UNIVERSITY

J. Gonski 3

LLP Searches at ATLAS

Organization of analyses:

- SUSY group: R-parity violating/long-lived (RPVLL)
- Exotics group: Unusual signatures and Exotic Higgs (UEH)

Disappearing Tracks

Search for long-lived charginos based on a disappearing-track signature using 136 fb-1 of pp collisions at √s = 13 TeV with the ATLAS detector" [Moriond, March 2021]

- Physics target: strong or electroweak production of long-lived chargino
 - Mass: O(100s GeV)
 - Lifetime: O(ps ns), from small mass splittings between $\chi\pm$ and $\chi0$
- Signature: soft pion that is indistinguishable above background, leaving charged track from chargino → invisible

Disappearing Tracket resolute confirmary Vertex

Key strategy: ≥1 pixel tracklets

- At least 4 hits in consecutive pixel layers (gain

Signal region	Electroweak production	Strong production
Number of electrons and muons Number of pixel tracklets	$0 \ge 1$	
$E_{\rm T}^{\rm miss}$ [GeV]	> 200	> 250
Leading jet p_T [GeV]	≥ 1 > 100	≥ 3 > 100
Second and third jet p_T [GeV] $\Delta \phi_{min}^{\text{jet}-E_T^{\text{miss}}}$	- > 1.0	> 20 > 0.4

- Background: data-driven
 - Processes: charged lepton scattering/reversal, fakes from random hit combinations
 - Pixel tracklet pT templates from CRs: low- E_T^{miss} , mid- E_T^{miss} , high E_T^{miss} lepton scattering
- Results: strong improvement from lumi + tracklet E^{topo} cut
 - Mass of pure wino (higgsino) charginos > 660 (210) GeV
 - hirm > 1.4 TeV for $\Delta m = 50$ GeV
 - Strongly produced in cascade decay of heavy gluino: $m_g > 2.1$ TeV for $m_{\chi\pm}$ 300 GeV

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Exotic Higgs Decays to LLPs

Search for exotic decays of the Higgs boson into long-lived particles in pp collisions at √s = 13 TeV using displaced vertices in the ATLAS inner detector" [arXiv:2107.06092, July 2021]

- Physics target: exotics Higgs to scalar a
 - Higgs to BSM branching ratio: existing constraint < 21% (<u>ATLAS</u>+<u>CMS</u>)
 - Mass: a ~ O(10s GeV)
 - Lifetime: O(1-100s mm)
- Signature: two displaced vertices with high mass and track multiplicity

Higgs → LLPs Analysis

Key strategy: large radius tracking

- Looser track-to-vertex association on d0/z0
- At least 2 displaced vertices (DVs)
- Trigger on Z decay products (2 OSSF leptons in Z m_{II} window)

Background: data-driven

- CR defined with # DVs < 2
- Probability of DV reweighted across jet pT and DL1 b-tag score
- Validated in γ +jets

• Results:

- BR < 10% for LLP 4 < $c\tau$ < 100mm
- m_{LLP} < 40 GeV: most stringent constraint in this lifetime regime

Fills gap in coverage at O(cm) decay lengths

COLUMBIA UNIVERSITY

Stopped Particles

 * "A search for the decays of stopped long-lived particles at √s = 13 TeV with the ATLAS detector" [JHEP 07 (2021) 173, July 2021]

 Physics target: suppressed gluino decay due to heavy off-shell squark (R-hadrons)

- Mass: O(TeV) Empty (Collisions) - Lifetime: O(10⁻⁵ - 10³ sec)

• Signature: cluster of calorimeter energy

Lifetime-dependent exponential decay probability

Filled

(Collisions)

S. Morgenstern

Stopped Particles Analysis

Lifetime-dependent exponential decay probability

- 2017 dataset: 49.0/fb filled BXs, 298h empty BXs
- 2018 dataset: 62.1/fb filled BXs, 281h empty BXs (different bunch train configuration)

Displaced Vertices in Muon Spectrometer

 "Search for events with a pair of displaced vertices from long-lived neutral particles decaying into hadronic jets in the ATLAS muon spectrometer in pp collisions at √s = 13 TeV" [EPS, July 2021]

• Physics target:

- Mass: s ~ O(10s GeV), φ~ O(100s GeV) [including SM Higgs]
- Lifetime: O(0.1-1000s mm)
- **Signature**: narrow, high-multiplicity hadronic showers in muon detector

DV in MS Analysis

Key strategy:

- Dedicated HLT trigger [JINST 8 (2013) P07015]
- Dedicated vertexing algorithms [JINST 9 (2014) P02001]
- 2 isolated MS vertices outside of transition regions with $\Delta R > 1$, matched to trigger clustering
- Background: punch-through QCD jets + residual
 - Validated in non-isolated VR

Limits set on a for mediator m and scalar LLF

- H→BSM BR < 10% for LLP 4 cm < $c\tau$ < 71.3 m
- First ATLAS exclusion for LLPs \rightarrow ttbar in the MS

See <u>Audrey's talk</u> tomorrow!

Putting It All Together

- Lifetime coverage: ~17 decades! b-tagging [ps] O(1 day)
 - Be sure to integrate prompt searches in summaries!
- Many Run 2 displaced objects/vertices searches:
 - Inner detector: ✓ <u>DV+µ</u>, <u>displaced leptons</u>, dilepton DV, DV+jets
 - Ecal: 🖌 e/y vertex
 - Hcal: 🗸 calorimeter ratio
 - Muon spectrometer: 🗸 DV in MS
- Higgs to LLP decays: B(H → aa → 4b) reaches a few % for lifetimes around ~1 ns for LLP masses of 35—55 GeV
- Ionization:
 - Milli/fractional-charged particles
 - Multi-charged/highly ionizing searches (pixel dE/dx, stable MS TOF)
- Dark sector: emerging/semi-visible jets
- Notes on summaries/combinations:
 - RECAST-ability: lifetimes → model couplings?

Strong Summary vs. Coupling

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Future Search Considerations

- Be sure to well-cover areas of phase space of interest for current anomalies/mysteries
 - Muon g-2 & LHCb flavor anomalies imply possible new couplings to leptons; could be explained for ex. by RPV SUSY with 3rd generation super-partners [2106.15647]
 - Neutrino masses: neutrino/neutralino mixing from bilinear RPV couplings → 100µm lower bound on decay lifetime. Many possible decays/reinterpretations [0712.2156]
- Unusual/uncovered/unexpected... ?
 - Exotics Higgs:
 - Decays to LLPs where daughters have different masses ?
 - VBF topology triggers for LLP searches in signatures without leptons/ MET/energetic jets?
 - Role of anomaly detection: model-independence through very careful background characterization

 $\times \langle \tilde{v} \rangle$

Towards Run 3 & HL-LHC

- Large radius tracking: run over hits leftover from standard tracking [<u>ATL-PHYS-</u> <u>PUB-2017-014</u>]
 - Reprocessing of full Run 2 dataset
 - Run 3: 95% reduction in fakes with only 10-15% reduction in efficiency [<u>ATL-PHYS-</u> <u>PUB-2021-012</u>]
- New displaced e/µ object triggers: extend production radius
- Phase-II Upgrades:
 - Inner detector: expect DV increased efficiency due to new Si Inner Tracker (ITk)

G

IN THE CITY OF NEW YORK

 High Granularity Timing Detector (<u>HGTD</u>): σ_t ~ 30 ps/track

Conclusions

- Broad and exciting LLP search program at ATLAS!
 - Many important theoretical interfaces: SUSY, dark sector, flavor anomalies...
- LLP searches are the place to be for Run 3:
 - Large radius tracking \rightarrow increased displaced track efficiency
 - Many yet-to-be-covered signatures of interest
- Long-term program through HL-LHC lifetime
 - Important complementarity with eg. MATHUSLA, FASER, milliQan, etc.
- Integration & connectivity are crucial! Detector expertise, interpretations/combinations all overlapping in LLP searches

COLUMBIA UNIVERSITY

Disappearing Track Results

	Electroweak channel	Strong channel	×₁ً ۲ ت ¹⁰ ۲	$\chi_{1}^{-}, \chi_{1}^{-}\chi_{2}^{-}, \chi_{1}^{-}\chi_{1}^{-}$ produc			$\sum_{i=1}^{n} \frac{\chi_{i}^{2}}{1} \chi_{i}^{2}, \chi_{i}^{2} \chi_{i}^{2}, \chi_{i}^{2} \chi_{i}^{2}$	$\chi_1^- \chi_1$ production		
	High- E^{mis}	s SR				=		S Preliminary		
	Ingli <i>L</i> _T	bit	<u>ل</u> ک			-	$\sqrt{5}^{-0.45}$ $\sqrt{5} = 13$	3 TeV, 136 fb ⁻¹		
Fake	2.6 ± 0.8	0.77 ± 0.33	2-			1		pected 95% CL lin pected 95% CL lin	mit (±1 ♂ _{theory}) mit (±1 ♂ _{exp})	
Hadron	0.26 ± 0.13	0.024 ± 0.031	1					LAS (13 TeV, 36.1	I fb ⁻¹ , EW prod. Of	bs.)
Electron	0.021 ± 0.023	0.004 ± 0.004	Ē				0.35		juic nggano	
Muon	0.17 ± 0.06	0.049 ± 0.018	0.3 -							
Total Expected	3.0 ± 0.7	0.84 ± 0.33	0.2 -		ATLA √s = 13	S Preliminary - TeV, 136 fb ⁻¹	0.30	A1 #1 #1 *		
Observed	3	1	0.1	at an and a second	Observed 95% CL lin Expected 95% CL lin	nit (±1 σ_{theory}) - nit (±1 σ_{exp}) -	0.25	No. an		
$p_0(Z)$	0.5 (0)	0.38 (0.30)	0.04		••• ATLAS (13 TeV, 36.1 ••• Theoretical line for p	fb ⁻¹ , EW prod. Obs.) ure higgsino	Ē	None and		
Observed $\sigma_{,95\%}$ [fb]	0.037	0.028	0.02				0.20	and the second s	and a second	
Expected $\sigma_{v_{1s}}$ [fb]	0.038 + 0.014	0.024 + 0.009	0.01							
VVII	10	2400	ĝĝ production,	$B(\widetilde{g} \rightarrow qq\widetilde{\chi}_{1}^{\pm})=67\%, B($	$\widetilde{g} \rightarrow qq \widetilde{\chi}_1^0)=33\%$	Strong	g̃g production, B(g̃	$\rightarrow qq \widetilde{\chi}_1^{\pm}$)=67%, E	$\exists (\widetilde{g} \rightarrow qq\widetilde{\chi}_1^0) = 33^\circ$	%
$\tilde{x}^{\pm} \tilde{x}^{0} \tilde{x}^{\pm} \tilde{x}^{\dagger}$ production (v	Nipo) tor o 5 0	≥ ²⁴⁰⁰		$S(g \rightarrow qq\chi_1)=07\%, B(g \rightarrow qq\chi_1)=07\%$	$g \rightarrow qq\chi_1$ = 33 %	⊂ 5 ²⁴⁰⁰		$\rightarrow qq\chi_1 = 07\%, E$	$3(g \rightarrow qq\chi_1)=33\%$	~
2 ¹⁰ E	(1) (1)	<u> </u>	Expected	95% CL limit (±1 σ _{theo} 95% CL limit (±1 σ _{exp})	_{ry})	ඒ 2200	Expected 95	% CL limit (±1 σ _{the} % CL limit (±1 σ _{exr}	_{30ry}) p)	
		اير 2000	ATLAS (1	3 TeV, 136 fb ⁻¹ , EW pr 3 TeV, 36 1 fb ⁻¹ , Stron	rod. Obs.) a prod. Obs.)	2000 ك َرَّ =	ATLAS (13 T	eV, 136 fb ⁻¹ , EW r	prod. Obs.)	-
		Ĕ 1800	E m(g) = m	$\tilde{\chi}_1^{\pm}$)	g prod. 000.)	E 1800	$m(\tilde{g}) = m(\tilde{\chi}_1^{\pm})$	0,00.115,010	ng prod. Obc.)	-
2-		1000	E ATLAS Prelir	ninary 136 fb ⁻¹		1600	ATLAS Prelimin	ary		=
		1600	$E \tau(\tilde{\chi}_{1}^{\pm}) = 0.2 \text{ ns}$				$\tau(\tilde{\chi}^{\pm}) = 1.0 \text{ ns}$			Ē
E /		1400	F '			1400	' F //			
0.3	and the second sec	1200				1200	-	1 - Y		1
0.2	A REAL PROPERTY OF THE PARTY OF	1000	E /			1000				
0.1	$\sqrt{\text{s}} = 13 \text{ TeV}, 136 \text{ fb}^{-1}$	800		- Carlon and		800				
0.04	Constructed 95% CL limit (±1 o _{theory}) Expected 95% CL limit (±1 o _{theory})	600				600				
0.03	•••• ATLAS (13 TeV, 36.1 fb ⁻¹ , EW prod. Obs.)	400	E			400	Ē			
	Theoretical line for pure wino	400				400	F			
200 400	600 800 1000	, 200				200				
	m(X ₁)[GeV]	8	00 1200	1600	2000	2400 80	JU 1200	1600	2000	2400

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

m(g) [GeV]

m(ĝ) [GeV]

Exotics Higgs to LLP

Table 1: The full set of selection criteria applied to DVs. **Background Estimation** ATLAS √s = 13 TeV Vertex probability 12 Jet DL1 score Selection type Requirement 6.5e-03 8.3e-03 4.0e-03 7.7e-03 10 $|d_0^{\rm DV}| < 0.8 \,\rm mm$ Track pruning ± 9.3e-04 ± 1.3e-03 ± 1.1e-03 ± 6.6e-04 $|z_0^{\text{DV}}|$ < 1.2 mm 8 $\sigma(d_0^{\rm DV}) < 0.1 \text{ mm}$ 9.4e-03 5 2e-03 7 5e-03 1 1e-02 6 $\sigma(z_0^{\rm DV}) < 0.2 \, \rm mm$ 4.9e-04 ± 6.6e-04 ± 6.5e-04 ± 1.0e-03 Vertex preselection $\chi^2/n_{\rm DoF} < 5$ 8.2e-04 1.6e-03 3.1e-03 6.0e-03 ± 3.6e-04 ± 9.3e-04 r < 300 mm- 1 4e-04 + 2.6e-043.2e-04 7.2e-04 1.7e-03 1 2e-04 $|z| < 300 \,\mathrm{mm}$ ± 1.8e-05 ± 5.0e-05 ± 8.5e-05 ± 2.4e-04 pass material veto 7.8e-05 1.5e-04 4.2e-04 2 0e-05 ± 2.3e-05 ± 7.8e-05 - 3 0e-06 + 1.3e-05 10⁻⁵ Vertex selection $n_{\rm trk} > 2$ $m/\Delta R_{\rm max} > 3 \text{ GeV}$ 1.4e-04 ± 3.2e-05 1.7e-05 4.0e-05 -4 ± 1.0e-06 ± 7.0e-06 + 3.0e-06 $r/\sigma(r) > 100$ 10⁻⁶ $\max(|d_0|) > 3 \text{ mm}$ -6 10² $\Delta R_{\rm jet} < 0.6$ Jet p₋ [GeV] 10 ATLAS Data $\sqrt{s} = 13 \text{ TeV}$. 139 fb⁻¹ 10¹ Bkg. prediction - ZH, H \rightarrow aa 10 -- m_a = 16 GeV 10 $B(H \rightarrow aa \rightarrow b\overline{b}b\overline{b}) = 10\%$ m_ = 35 GeV m_a = 55 GeV 10 10 $c\tau_a = 10 \text{ mm}$ 10⁵ 10 Unblinded 10 **************** 10 SR 10 1.4 E Data/Bkg. 12 0 ≥2 Predicted events: 1.30 ± 0.08 (stat.) ± 0.27 (syst.) Observed events: 0 Fills gap in coverage COLUMBIA UNIVERSITY J. Gonski IN THE CITY OF NEW YORK

Stopped Particles Regions

Search/ background samples

Data sample	Bunch	Trigger	Offline
(purpose)	structure	requirements	requirements
Search sample	Empty	HLT jet $p_{\rm T} > 55$ GeV	Leading jet $p_{\rm T} > 90 \text{ GeV}$
		HLT $E_{\rm T}^{\rm miss} > 50 {\rm GeV}$	
		HLT jet $ \eta < 2.4$	Leading jet $ \eta < 2.4$
Cosmic sample	_	L1 jet $p_{\rm T} > 12 \text{ GeV}$	Leading jet $p_{\rm T} > 90 \text{ GeV}$
			Leading jet $ \eta < 2.4$
Beam-induced background sample	Unpaired	L1 jet $p_{\rm T} > 12$ GeV or	Leading jet $p_{\rm T} > 90 \text{ GeV}$
		L1 jet $p_{\rm T} > 50 \text{ GeV}$	
			Leading jet $ \eta < 2.4$
Cavern background sample	Empty	Random	_

Region	Data	Number of	Leading	α	Leading jet	Leading		
	sample	muons	jet <i>p</i> _T [GeV]		Wø	jet η		
Central vali	dation regions							
VRC- <i>a</i>		$\geq 1 (\eta < 1.4)$		> 0.2	> 0.02			
VRC-bib	Search sample	0	> 150	> 0.2	0.01-0.02	< 0.8		
$VRC-w_{\phi}$		0		< 0.2	> 0.02			
Inclusive val	lidation regions							
VRIncl- α		$\geq 1 (\eta < 1.4)$		> 0.2	> 0.02			
VRIncl-bib	Search sample	0	> 150	> 0.2	0.01-0.02	< 2.4		
VRIncl- w_{ϕ}		0		< 0.2	> 0.02			
Central BIB normalisation regions								
NRC- <i>a</i>		$\geq 1 (\eta < 1.4)$		> 0.2	> 0.02			
NRC-bib	Search sample	0	90-150	> 0.2	0.01 - 0.02	< 0.8		
NRC- w_{ϕ}		0		< 0.2	> 0.02			
Inclusive BIB normalisation regions								
NRIncl- <i>a</i>		$\geq 1 \; (\eta < 1.4)$		> 0.2	> 0.02			
NRIncl-bib	Search sample	0	90-150	> 0.2	0.01-0.02	< 2.4		
NRIncl- w_{ϕ}		0		< 0.2	> 0.02			

L.Corpe

Stopped Particles

COLUMBIA UNIVERSITY

RPVLL Public Results

	Disappear.	Pixel dE/dx	SMP	DV+MET	DV+Jets	DV+mu	Dilepton DV	Disp.Leptons	Photons	Stoppped
7TeV	2011	2011	2011	2011						2012
	2012	20	12		2012				2013	
8TeV	2013	2015	2014	2015	-	2015	2015		2014	2013
2015		2016	2016							
2016	2017	2018	2019	2017	-	-	2019			
Full Run2	2021(CONF)	Draft1	R&D	R&D	post-PAR	2020	R&D	2020	Unblinded	2021
2nd wave	R&D	Being discussed						micro-displaced	photon DV R&D	

ATLAS Physics Briefings

TLAS

ATLAS Preliminan

vs=13 TeV, 139 fb1

All limits at 95% CL

The hunt for higgsinos reaches new limits

The ATLAS Collaboration has released three new searches for "higgsinos" - the super-partner of the Higgs boson.

Physics Briefing I 10th June 2021

Better late than never: ATLAS searches for late-decaying new particles

A new result from the ATLAS Collaboration - debuted at the virtual Moriond Electroweak conference sets itself apart from more traditional LHC searches. Typically, physicists will look for new particles produced in LHC collisions that immediately decay to known or invisible particles. This analysis, in contrast, looks for new particles that live for roughly a hundred nanoseconds or more before decaying. Physics Briefing | 23rd March 2021

ATLAS researchers are broadening their extensive search programme to look for more unusual signatures of unknown physics, such as long-lived particles. A theory that naturally motivates long-lived particles is supersymmetry (SUSY). A new search from the ATLAS Collaboration - released this week for the 5th International Conference on Particle Physics and Astrophysics (ICPPA-2020) - looks for the superpartners of the electron, muon and tau lepton

Physics Briefing I 7th October 2020

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

CO-NLSP ...

ية 🔲

