

Search for millicharged particles at J-PARC SUB-Millicharge ExperimenT (SUBMET)

Jae Hyeok Yoo (Korea University) on behalf of the SUBMET collaboration 11/09/2021

Tenth Workshop of Long-lived Particle Community

Motivation

- Since its discovery in Robert Millikan's oil drop experiment, electric charge quantization is a longstanding question in particle physics
- Well-motivated dark-sector models have been proposed to predict the existence of millicharged particles (χ s) while preserving the possibility for unification
 - Such models can contain a rich internal structure, providing candidate particles for dark matter
- Results of EDGES experiment [Nature 555, 67–70 (2018)] can be explained if a fraction of DM is millicharged
- Various searches for χ s so far

Motivation

- Since its discovery in Robert Millikan's oil drop experiment, electric charge quantization is a longstanding question in particle physics
- Well-motivated dark-sector models have been proposed to predict the existence of millicharged particles (χ s) while preserving the possibility for unification
 - Such models can contain a rich internal structure, providing candidate particles for dark matter
- Results of EDGES experiment [Nature 555, 67–70 (2018)] can be explained if a fraction of DM is millicharged
- Various searches for χ s so far
- SUBMET: new experiment targeting small charge & low mass region

J-PARC complex

https://sciencesprings.files.wordpress.com/2018/01/j-parc-facility-new-japan-proton-accelerator-research-complex-j-parc-located-in-tokai-village-ibaraki-prefecture-japan.jpg

Production of \chiss

- A new U(1) in dark sector with massless dark-photon (A') and massive dark-fermion (χ)
 - A' and B (in SM) kinetically mix and charge of χ is proportional to mixing
- χ s can be produced from the decay of neutral mesons
 - π^0 , η through a photon (π^0 , $\eta \to \gamma \gamma^* \to \gamma \chi \bar{\chi}$)
 - ρ, ω, ϕ , and J/ψ directly to $\chi \bar{\chi} (\rho, \omega, \phi, J/\psi \to \gamma^* \to \chi \bar{\chi})$
- In both cases, m_χ up to $m_{meson}/2$ is allowed

Protons hit the target and produce hadrons

Hadrons are stopped in beam dump

Muons pass the beam dump, but lose energy in sand (5 MeV/cm) before reaching the Neutrino Monitor building

Only $\chi{\rm s}$ (and neutrinos) reach the detector (energy loss for $\chi{\rm s}$ with $Q=10^{-3}e$ is <0.1 MeV)

- Inspired by the milliQan experiment, use long scintillator bars so that χ s with small charge can produce photons
 - For small ϵ , detect single photons

- Inspired by the milliQan experiment, use long scintillator bars so that χ s with small charge can produce photons
 - For small ϵ , detect single photons
- Stack scintillators to increase total volume and use two layers to control backgrounds

- Inspired by the milliQan experiment, use long scintillator bars so that χ s with small charge can produce photons
 - For small ϵ , detect single photons
- Stack scintillators to increase total volume and use two layers to control backgrounds

- Inspired by the milliQan experiment, use long scintillator bars so that χ s with small charge can produce photons
 - For small ϵ , detect single photons
- Stack scintillators to increase total volume and use two layers to control backgrounds
- Align the two layers such that a χ goes through them
- Require small time difference $(\Delta t = 10 \sim 20 \text{ ns})$ between hits in the two layers

Beam time

- A proton spill hits the target every 1.32 s
- Each spill contains 8 bunches (width ~ 80 ns) and they are ~600 ns apart
- Can use this info to get a significant reduction of acquisition time
 - Expect to achieve background rejection by ${\cal O}(10^{-6})$

Backgrounds

Detector backgrounds

• Random coincidence due to PMT dark counts is expected to be the main source (O(10)/year for DCR=500 Hz)

Beam-induced backgrounds

- Muons from hadron decays do not reach detector due to energy loss
- Neutrino interactions with scintillator: estimated using INGRID measurements and found to be negligible
- Muons from neutrino-building interactions can be identified/rejected by scintillator plates in front of detector

Other sources

- Cosmic shower: needs in situ measurement, but easy to control due to large energy deposit
- Neutrons from surrounding structure: shields by outermost bars, scintillator panels
- Non-beam-induced backgrounds can be estimated using no-beam data

Sensitivity of SUBMET

Sensitivity of SUBMET

JHEP 05 (2021) 031

PMT

Dark count rate measurement

Magnetic shielding (mu-metal)

Readout

connected twoinputs using0 ohm resistors

- Use Domino Ring Sampler (DRS) chip (1024 sampling depth, 0.7 GSPS)
- Each channel can read 1.5 us, but one can cascade 4 (actually up to 8) channels to extend the acquisition window to 6 us
 - Cascading two channels confirmed using DRS evaluation board
- Producing prototype readout board with a company (NOTICE Korea)
- Working on trigger delay board (FPGA) to control the readout time

Summary and outlook

- We proposed a new experiment to search for millicharged particles using 30 GeV proton beam at J-PARC
- Unique opportunity to probe small charge & low mass $(m_\chi < 1.6~{\rm GeV})$ millicharged particles
- Using beam time allows for significant background reduction
- Submitted proposal to the 32nd J-PARC PAC this summer
 - Received very positive feedback
- Funding from the National Research Foundation of Korea (0.5M USD) is secured
- Looking forward to building and installing the detector in the coming year!

The team

Sungwoong Cho Suyong Choi Jeong Hwa Kim Eunil Won Jae Hyeok Yoo

Claudio Campagnari Matthew Citron Ryan Schmitz David Stuart

Christopher S. Hill

Andy Haas

Jihad Sahili Haitham Zaraket

Albert De Roeck Martin Gastal