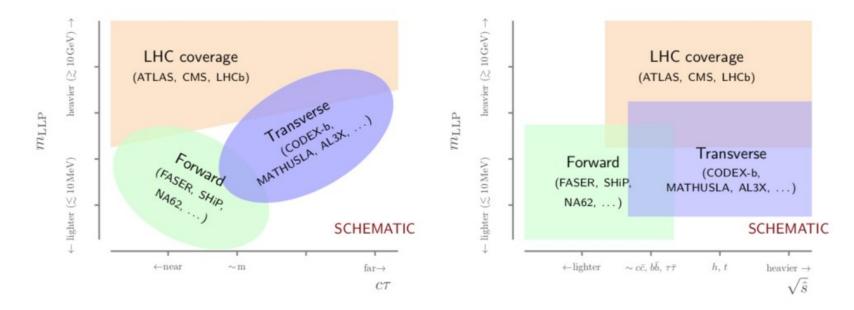
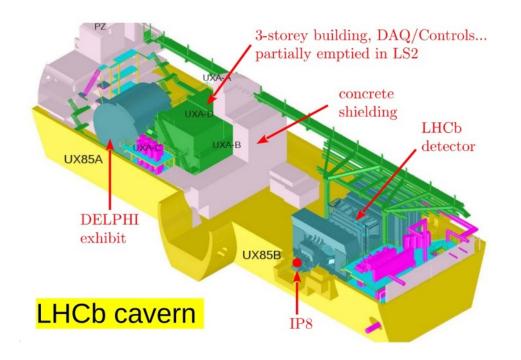
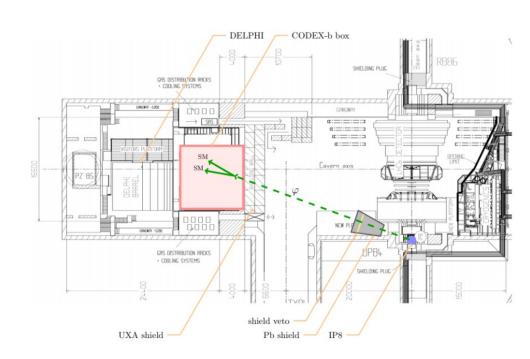


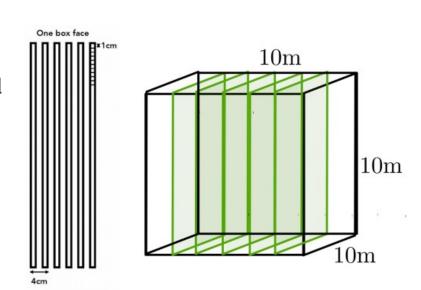
CODEX-b: concept and current status


Louis Henry, on behalf of the CODEX-b collaboration LLPX, virtual 09/11/2021

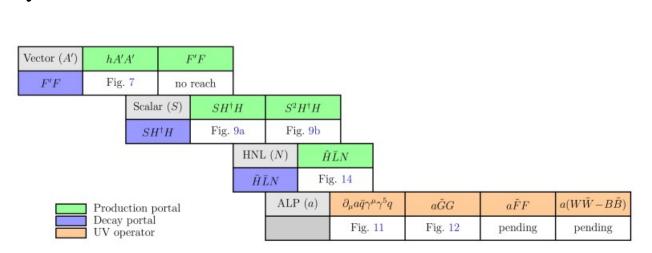

LLP: LHC context

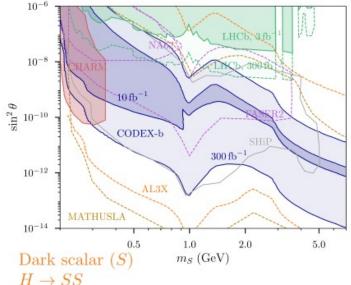

- During last few years, push in the LHC community to look for LLPs.
 - Experiments, triggers designed around ~ prompt NP.
 - The LHC could be producing mounds of them that we would not detect/trigger on them.
 - Lots of ideas: J. Phys. G: Nucl. Part. Phys. 47 090501 (2020), 2110.14675
- Working at an interaction point of the LHC offers unique opportunity to access NP produced in high centre-of-mass energy collisions.
 - Recent paper on opportunities at LHC, modifying triggers: 2110.14675.
- CODEX-b belongs to the 'transverse' family, specialising in a specific angular coverage.

An answer: CODEX-b


- CODEX-b: COmpact Detector for EXotics at LHCb
 - Expression of interest: 1911.00481.
- Cheap, off-axis (transverse) tracker behind a huge shield and a long distance away from LHCb, in preexisting cavern.
- Trade-off between size and distance.
- Would be located either in the former D1 room or at the current location of DELPHI.
 - Possible some servers are still in the room, possibilities studied.

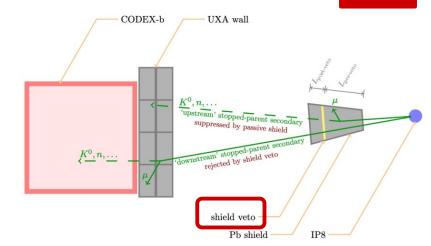
Base layout of the detector


- CODEX-b is far from the primary vertex → even a reduced angular acceptance corresponds to a large area.
- Need cheap, efficient and fast detection.
- Why fast?
 - Interplay with LHCb is easier.
- Answer: Resistive Plate Chambers (RPC's) fast, precise, cheap for large area. 6 RPC layers at 4 cm intervals on each box face with 1 cm granularity.
 - Additional 5 layers inside (improve vertex resolution and tracking efficiency);
 - 50-100 ps timing from RPC's foreseen for mass reconstruction
- No magnetic field, no calorimetry, no Cherenkov
 - Possible to reconstruct mass from geometry, showcased in Phys. Rev. D 97, 015023 (2018).
- Coincidence with rest of the event at LHCb being studied



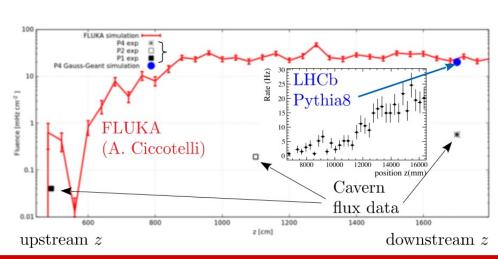
Physic motivation and reach

• Considering the distance from the interaction point and the transverse position, aiming at a certain mass/lifetime range and at decaying NP produced through heavy intermediate state (e.g. Higgs).

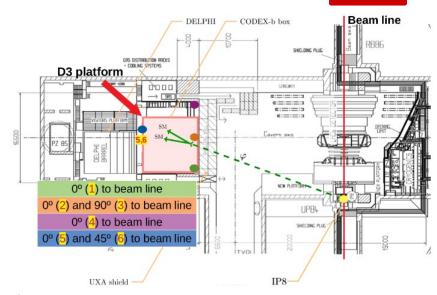

- Many studies reported in 1911.00481.
- Right: sensitivity contours of diverse experiments.
- Note the shape difference with respect to LHCb
 → complementarity.
- Below: summary of accessible states from 1911.00481

How to achieve 0 background?

- First answer: let's put a huge shield!
 - 32 λ of concrete (7 λ)+Pb,W (25 λ).
 - Stops the 10^{14} neutrons & K_L / 300 fb⁻¹.
 - But also gives more chances to muons to interact deep into the shield and shower: stopped-parent secondaries.



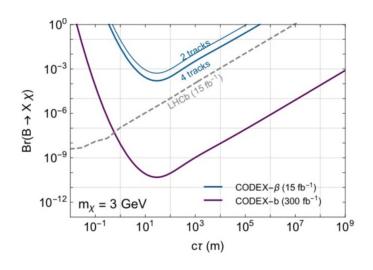
- To achieve truly 0 background, need to use an active shield:
 - Deep enough that the rejection rate is much smaller than the event rate
 - Not too close to Codex-b, or else the muon will have been stopped already.
- Nominal shield in so-called '20+5 λ ', in total 12 λ from Codex-B.


BG species	Particle yields			
	Net $(E_{\rm kin}^{\rm neutral} > 0.4 {\rm GeV})$	Shield veto rejection (total)	Shield veto rejection $(\pm/0 \text{ correlation})$	Net yield
n	58.10 ± 4.63	$(4.59 \pm 0.15) \times 10^5$	$(3.44 \pm 0.51) \times 10^4$	_
$n \ (> 0.8 \text{GeV})$	2.78 ± 0.25	$(1.03 \pm 0.06) \times 10^5$	$(7.45 \pm 1.92) \times 10^3$	≲ 1
\bar{n} (no cut)	$(3.24 \pm 0.72) \times 10^{-3}$	34.40 ± 25.80	$(7.12\pm2.19)\times10^{-2}$	≪ 1
K_L^0	0.49 ± 0.05	$(1.94 \pm 0.74) \times 10^3$	54.40 ± 19.20	$\lesssim 0.1$
K_S^0	$(6.33\pm1.39)\times10^{-3}$	93.90 ± 45.80	0.74 ± 0.19	≪ 1
$\nu + \bar{\nu}$	$(5.69 \pm 0.00) \times 10^{13}$	$(7.35 \pm 0.12) \times 10^6$	$(7.31 \pm 0.11) \times 10^6$	_
μ^+	$(1.04 \pm 0.00) \times 10^6$	$(1.04 \pm 0.00) \times 10^{10}$	$(1.04 \pm 0.00) \times 10^{10}$	-
μ^-	$(8.07 \pm 0.01) \times 10^5$	$(8.07 \pm 0.01) \times 10^9$	$(8.07 \pm 0.01) \times 10^9$	_

How to trust our simulation though?

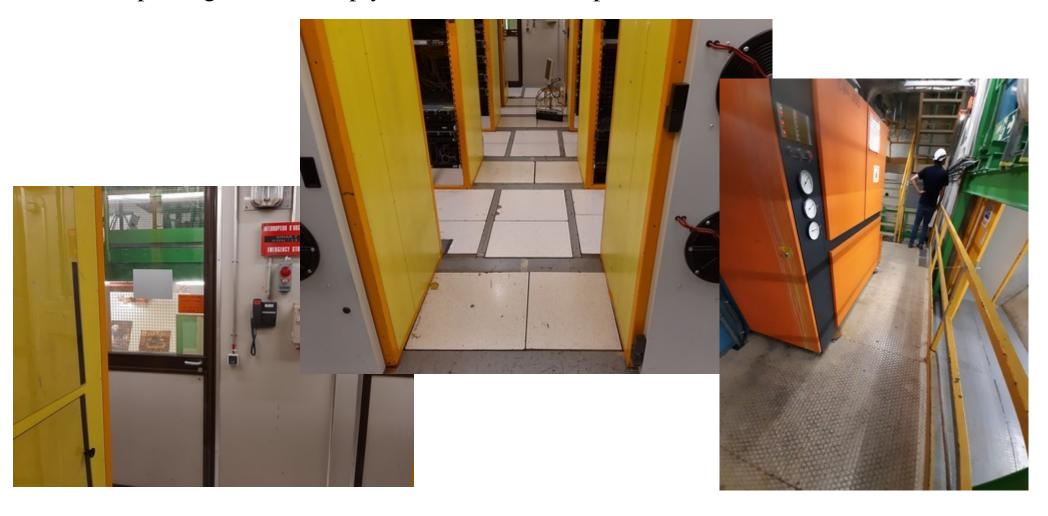
- Previous results obtained through extensive
 and conservative simulation campaign.
- Measurement campaign performed in Run 2, documented in 1912.03846.
- Rates show that ambient noise can be neglected.
- Simulation overestimates by an order of magnitude the noise rates.
- Recently performed second simulation studies with FLUKA: agrees with Geant4+Pythia8.

FLUKA agrees with Geant4, current MC estimate maintained



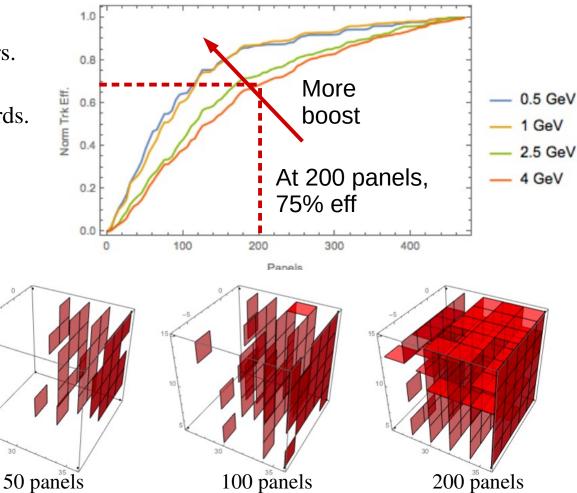
Testing the concept: CODEX-β

- CODEX-b is an HL-LHC detector, but we must do a lot in the meantime.
- Testing technology, background rates, reconstruction can be achieved by installing a smaller version: CODEX-β.
- 6 detector faces + 1 inner station:
 - 14 BIS7 RPCs triplet chambers. Enough space already in D1 area of the cavern once DAQ racks shifted out.
 - $2\times2\times2$ m³ demonstrator for Run 3 (1/25 of full detector).
- No active veto, so expect $\sim 10^7 \, \mathrm{K_L}$ decays in demonstrator.
 - Useful to validate the reconstruction algorithms designed for the full detector.
- First try to include CODEX-b in the LHCb online system.


- Physics reach limited to 2/4-body.
 - e.g. multibaryonic decays from hidden valley.

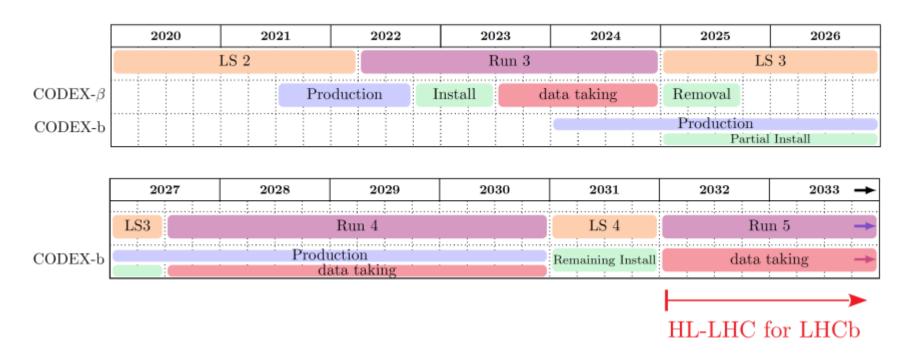
From blueprints to cavern: exploration of the room

- This summer, we went to IP8 to take measurements, understand how to install the detector.
- Moved forward discussions about how to bring CODEX- β inside, where to get the power from, where exactly to put the detector.
- Mock-up being built out of plywood to make sure panels fit.

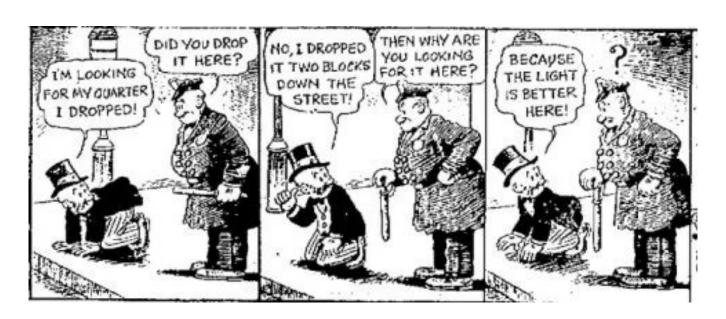


Progress on the detector design

- Manufacturing of the RPCs will start soon.
 - Adapt ATLAS RPCs to our needs. Currently BIS7 Phase I, adapt ATLAS RPCs into our own mechanical supports (R&D starting).
- CODEX-b full potential unlocked in symbiosis with LHCb → need for DAQ to be integrated in LHCb.
 - CODEX-b takes its know-how and electronics from ATLAS muon chambers.
 - Now checked and approved that these boards can talk to LHCb's TELL40 boards.

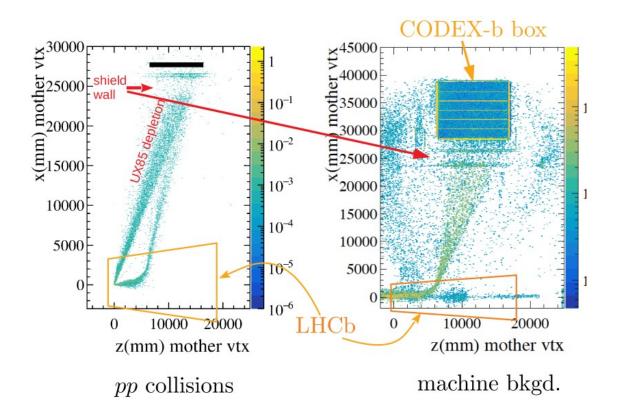

 Newer module and detector designs, also considering fewer RPCs, going from 6000 m2 to 3000 m2.

IP



News and conclusion

- Explorations of the CODEX-β room have been conducted, plans to install the detector being set.
- Collaboration is expanding rapidly, getting more organised with dedicated working groups
- Budget is being finalised for CODEX- β (~200k CHF): essential for future plans for CODEX-b (O(10M CHF)).
- Working on a detailed installation plan to communicate to the LHCb safety experts, and then the installation team → objective end of 2021.



Thank you!

Machine-induced backgrounds

- Additional RadMon unit to be placed in CODEX-β area for Run 3 to monitor hadron backgrounds (thanks to Giuseppe Lerner).
- In discussion with LHCb lumi group as well as CERN radiation group to include CODEX-b area for Run 3 beam condition MIB studies.

