

Search for long-lived particles decaying to displaced leptons

Bryan Cardwell (UVA) on behalf of the CMS collaboration

LLPX 10.11.2021

arxiv.org/abs/2110.04809

Why d_o?

10.11.2021

Select events with $\geq 2 \ell$

Use (slightly) atypical triggers for sensitivity to displaced ℓ :

- µ triggers with no impact parameter constraints
- Photon triggers in place of e triggers

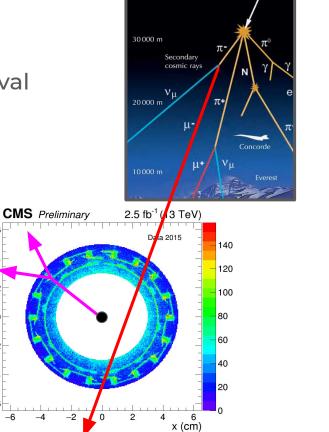
In each channel (ee, eµ, or µµ), select events with $\geq 1 \ell$ of each type:

- ℓ must have fairly high momentum (p_T > 35–75 GeV)
- *l* must be well reconstructed (in barrel, pass ~tight *l* IDs)
- *l* must be isolated (use custom iso, agnostic to *l*-primary vertex association)

Set no constraints on jets, p_{T}^{miss} , ℓ charge, exact # of ℓ , etc

Remove specific backgrounds

Cosmic ray µ


 Reject pairs of µ based on relative time of arrival and 3D angle

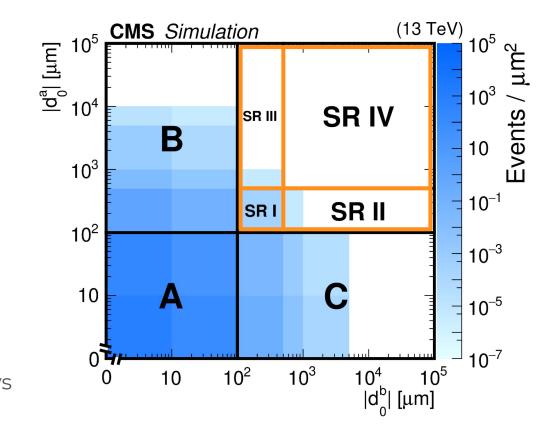
Material interactions

Reject pairs of *l* that form a common vertex in detector material

Displaced decays of SM mesons

- Reject pairs of ℓ that are too close together (require $\Delta R > 0.2$)

10.11.2021

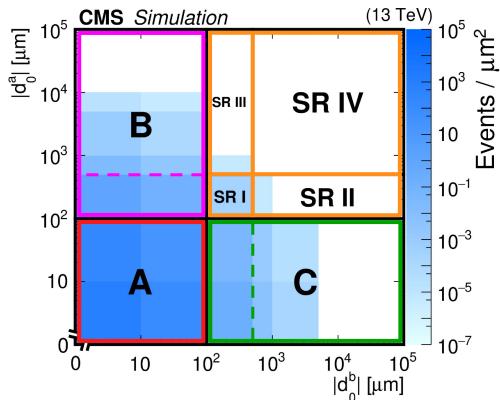

/ (cm)

CMS,

UNIVERSITY Signal region backgrounds

bryan.cardwell@cern.ch

- Define control regions (CRs)
 - $\leq 1 \ell$ with $|d_0| > 100 \mu m$
- Define signal region (SR)
 - $\geq 2 \ell$ with 100 µm < $|d_0|$ < 10 cm
- Remaining SR backgrounds:
- Promptly decaying *l* with poorly measured d_o
- 2. ℓ from τ decays
 - decay length $\approx 87 \ \mu m$
- 3. *l* from heavy-flavor meson decays
 - decay length ≈ 500 µm



10.11.2021

Background estimation

Estimate bg from all sources with single, data-driven ABCD method

- Use number of events in each CR
 (N_A, N_B, N_C) to estimate N_{SR}
- $N_{sr} = (N_B \times N_C) / N_A$
- Apply correction to N_{SRI} to account for correlation from Z→ττ

Validate method

- Data and MC closure tests in CRs
- MC closure tests in SRs
- Dedicated studies to ensure cosmic-ray µ, material interactions, and pairs of ℓ from SM hadrons do not meaningfully contribute

Results

113-118 fb⁻¹ (13 TeV)

μμ

Bin SR in ℓd_0 and p_T to 10⁵ Events CMS Data maximize sensitivity to range Background Background uncertainty of LLP lifetimes and masses 10^{3} $\tilde{t} \rightarrow b\ell, m_{\tilde{t}} = 1500 \text{ GeV}, c\tau_0 = 1 \text{ cm}$ eμ ee 10 **Background predictions** \leq ~1 event in most SRs 10⁻¹ << 1 event in most-displaced SR 10⁻³ Observed yields are consistent Data-Bkg.

with bg-only hypothesis

Bkg.

low p

, high II

111

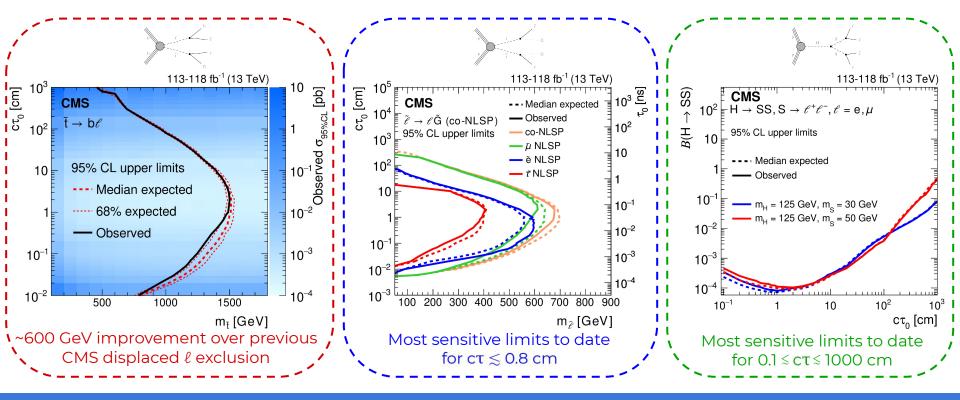
I, Iow D, high II

•

111

, low p, high II

 $l\nu$ SR


111

Interpretations

Constrain production of **RPV top squarks** and **GMSB sleptons** and the BR of **Higgs bosons to long-lived scalars** across wide range of new-particle lifetimes

bryan.cardwell@cern.ch

Summary

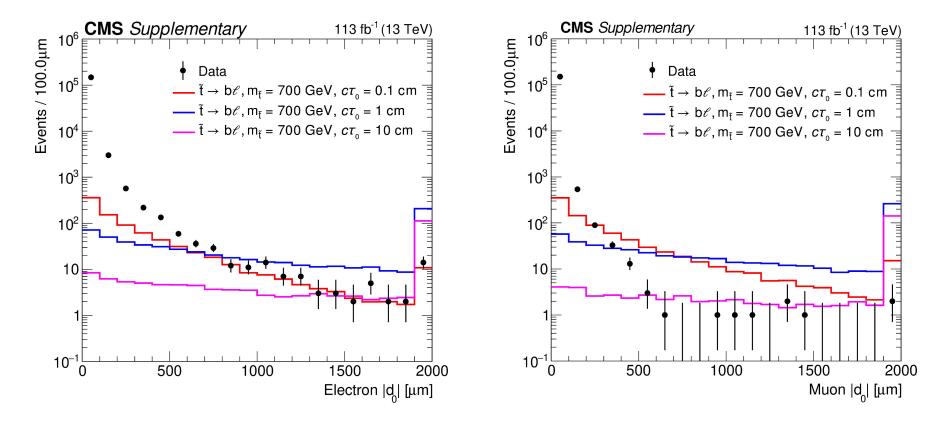
We have performed an **inclusive, signature-based** search for BSM LLPs that decay to leptons **without requiring the leptons to form a common vertex**

- Observation is consistent with bg-only hypothesis, so results are used to constrain several new physics scenarios
 - Most sensitive limits to date in several regions of parameter space

Paper submitted to EPJC

arxiv.org/abs/2110.04809

Additional material


oryan.cardwell@cern.ch

d₀ distributions

10.11.2021