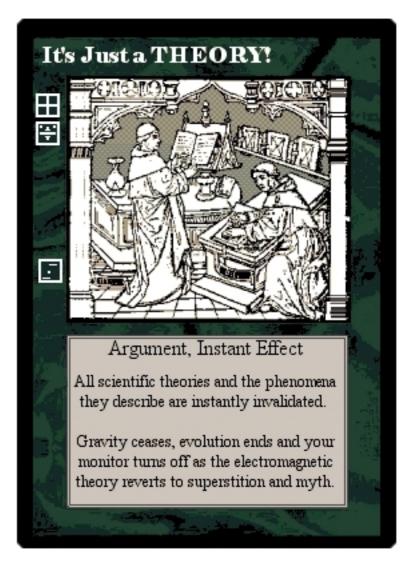
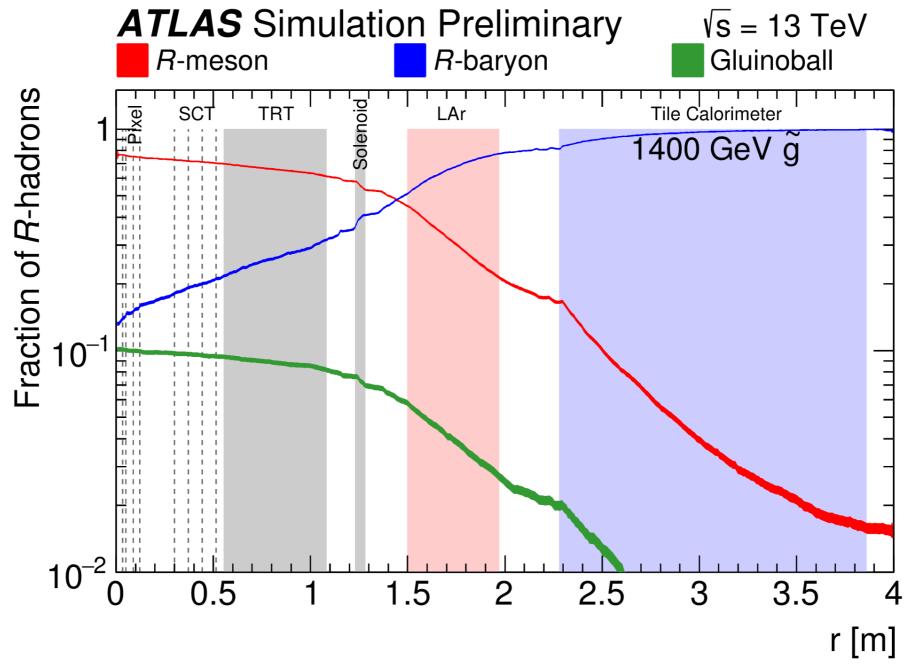
Why aren't there any quirks results from ATLAS or CMS yet?


Zach Marshall (LBNL); LLP Workshop, 10 Nov 2021

Spoiler: there are lots!


Detector Simulation

- Historically, there was an assumption that BSM particles are too application-specific to be included in Geant4
 - This means ATLAS and CMS might not use the same setups for BSM particles (this is a problem that several people have proposed to solve recently)
 - We adapted <u>the same underlying hadronic</u> <u>interaction code</u> for R-hadrons, and we've done <u>some cross-checks</u>
- This has left us to each solve the Quirk problem on our own
- There are a few hard parts to Quirk simulation
 - There are a few ways to solve them, and I'm aware of a few attempts in <u>CMS</u> and <u>ATLAS</u>
 - I don't think anyone loves their solution yet


Models Can Get Tricky

• Take R-hadrons for example. They re-hadronize as they move through the detector, and properties can evolve...

Reminder of quirk setups

• "<u>Quirks</u>" would form macroscopic bound states

What's Hard about Quirks

- Geant4 assumes all particles are independent
- When Geant4 propagates a particle, it knows:
 - where in the geometry that particle is
 - what the possible interactions are
 - what the next expected interaction is (including geometric boundary crossings)
- It picks a process or boundary to propagate to, and does one "step" to update the particle state
- Several assumptions break with quirks
 - The two quirks are not independent
 - "Where in the geometry" is not unique, and where the next boundary is has different answers for each particle. Issues like "out of the detector" are *extremely* complicated to get right.
 - We propagate through two materials at once, and have two particles with possible "next interactions"
 - For color charged quirks, the interactions may be different for each

Comments on quirk trajectories

• We have a bunch of different setups to distinguish, some of which are identical to searches that are already done.

Binding energy	Quirks with SM Electric Charge	Quirks with SM Color Charge
High energy (small distance)	Quirks propagate like a neutral particle, deposit energy like a doubly-charged particle. Search for (charged) SMP or HIP.	Quirks propagate like an even worse R-hadron. Search for a singly-produced SMP or R-hadron.
Medium energy	Actually strange trajectories like those on the last slide. Needs custom Geant4 setup.	Completely bananas trajectories. Needs combination of custom quirk transportation and R-hadron- like hadronic interactions.
Low energy (loose binding)	Quirks look independent. Search for a charged SMP.	Quirk looks independent. Search for pair-produced R- hadron-like things.

Quirk searches

- As has been <u>pointed out</u>, quirks can also stop in the detector, so our stopped particle searches are also sensitive to them
 - This was one motivation for some of the signal regions in the recent <u>ATLAS stopped</u> <u>particles search</u>
- Of course, if the quirks decay, we have many searches that could be sensitive (depending on the decay mode and lifetime involved)
- A number of ATLAS and CMS searches are sensitive *in principle* to certain quirk setups, but we've generally not done the explicit interpretation
 - When we do these things, we want to do them completely correctly
 - Getting this right is *hard*, and intimidating for a graduate student who might do a search like this
 - Joining forces on solving the modeling issues and providing a single central solution in Geant4 would be nice (a la <u>R-hadrons</u>!)
 - Alternatively, doing the 'simple' setups where we can approximate away the fundamental simulation issues would be fairly straightforward

Little Summary

- We've done lots of searches in ATLAS and CMS that are sensitive to a variety of quirk models, but I'm not aware of (m)any explicit interpretations in quirk models
- One of the big hurdles up to now has been getting the simulation right
 - Doing this correctly in Geant4 is hard
 - It'd be very nice if ATLAS, CMS, and others could work together on this!
- We could certainly do some interpretations "quickly" in more extreme (binding energy) models without too much difficulty, and this might even be doable via reinterpretation