Machine learning for LLP searches at the $\angle H C$ and beyond:
Overview and fetere

Gregor Kásieczka gregor.kasieczka@uni-hamburg.de Twitter: @GregorKasieczka LLPX - November IIth, 202 I

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

-PIER
Partnership of Universität Hamburg and DESY

Emmy NoetherProgramm Deutsche

Overview: In general..

> Extremely active adaptation of machine learning to particle physics

Inspire Search:
("machine learning" or "deep learning" or neural) and (hep-ex or hep-ph or hep-th)

..and long-lived

ATLAS \& CMS Run 2 Publications

- O(40) on long-lived/disappearing/emerging jets
- Using machine learning: 8
- Standard b-tagging: 3 (2107.06092, 2104.13474, 1909.03460)
- Boosted Decision Trees (BDT) for signal identification
- New architecture development: DNN + Decorr (1912.12238)

Pheno

- O(10) publications

Much slower adaptation to long-lived searches

Goal of this talk: Highlight status, discuss reasons, see possible ways forward

Start with supervised learning

Supervised Learning:

Attempt to infer some target (truth label): classification, regression
Use training data with known labels (often from Monte Carlo simulation)

observable features such as kinematics, vertices,

predicted LLP score

Target: For classification, find θ values that minimise cross-entropy:

$$
\mathcal{L}=-y \log (\hat{y})-(1-y) \log (1-\hat{y})
$$

How we can use it?

- Tagging of known SM particles

- Use case: Assume associated production LLP+X or use to define control regions
- Rely on default flavour/resonance/.. taggers

e.g. CMS DeepJet architecture (CMS-DP-2018-058, 2008.10519.)

How we can use it?

- Tagging of known SM particles

- Reconstruction and tagging of unknown LLP particles
- Use case: Produce/identify LLP candidates to define signal regions on object-level
- Offers several interesting challenges (discussed later)

How we can use it?

- Tagging of known SM particles
- Reconstruction and tagging of unknown LLP particles
- Tagging of complete signal topologies
- Obtain global signal score
- Similar issues at per-particle taggers
e.g. signal-identification Boosted Decision Tree (BDT) from ATLAS displaced hadronic jet search (1902.03094)

High- $_{T}$ preselection

cisins

- Which ML techniques are used in LLP searches (for signal identification)?
- Experimental results dominated by BDT-based tagging
- e.g. 2012.01581,1909.01246, 1902.03094, 1806.07355
- This means decision functions using a relatively small number (~10) of high-level features (e.g.) as input
- Not bad per-se
(but I will still argue why architecture matters)

Question of Architecture

- Integration of symmetries of the data (e.g. permutation invariance) can increase performance of machine learning models

- See 1806.01261 for an excellent discussion form the side of computer science
(a) Fully connected

(b) Convolutional

(c) Recurrent

Component	Entities	Relations	Rel. inductive bias	Invariance
Fully connected	Units	All-to-all	Weak	-
Convolutional	Grid elements	Local	Locality	Spatial translation
Recurrent	Timesteps	Sequential	Sequentiality	Time translation
Graph network	Nodes	Edges	Arbitrary	Node, edge permutations

Inductive biases of standard ML architectures (1806.01261)
Consider BDT equivalent to fully-connected NN in this regard

Question of Architecture

- Integration of symmetries of the data (e.g. permutation invariance) can increase performance of machine learning models
- See 1806.01261 for an excellent discussion form the side of computer science
- Also observed for HEP application (e.g. top tagging benchmark)

Popular Choice: Graphs

- Consists of Vertex: particle (e.g., four-vector)
Edge: distance (for example geometric)
- Works with:
- Data that naturally comes as a graph (e.g. a decay sequence)
- Data embedded in some geometric space (point cloud)
- Active development of graphs on CS side,

Graph and update rules from 1806.01261 increasing number of HEP applications: 1902.08570, 1902.07987, 1908.05318, 2008.03601, 2103.16701, 2101.08578, ... See 2007.13681 for a review

(a) Edge update

(b) Node update

(c) Global update

And for LLPs?

- Application to semi-visible jets by Bernreuther, Finke, Kahlhoefer, Kraemer, Alexander Mueck (2006.08639)
- Succesfully trained graph-based network to distinguish semi-visible jets from QCD jets

Dark shower form Z'
decay (1907.04346)

- Use jet-constituents kinematics as inputs

Challenge: Background Estimation

Background Estimation in LLP Searches

Papers using Data Based Background Estimation

Many possible reasons not to trust a Monte Carlo Model

- Instrument background is hard to simulate
- Unknown physics processes
- New final state that may not be well modeled
-> See talk by Gordon right afterwards

Challenge: Uncertainties

- Need to assign uncertainty to classifier outputs / simulation data differences
- Once trained, a ML model is a deterministic function of its inputs
- Classical techniques of uncertainty quantification still work!
- Propagation of input uncertainties or measurement in data
- Additional ML aspects
- Include uncertainties in optimisation to maximise sensitivity (1806.00322, 1806.04743, 2110.00810)

Challenge: Uncertainties

- Need to assign uncertainty to classifier outputs / simulation data differences
- Once trained, a ML model is a deterministic function of its inputs
- Classical techniques of uncertainty quantification still work!
- Propagation of input uncertainties or measurement in data
- Additional ML aspects
- Include uncertainties in optimisation to maximise sensitivity (1806.00322, 1806.04743, 2110.00810)
- Apply decorrelation to reduce effect of uncertainties / simulation difference (1611.01046,1703.03507,2001.05310,...)

$$
L=L_{\text {classifier }}\left(\vec{y}, \vec{y}_{\text {true }}\right)+\lambda \operatorname{dCorr}_{y_{\text {true }}=0}^{2}(\vec{m}, \vec{y})
$$

Challenge: Uncertainties

- Need to assign uncertainty to classifier outputs / simulation data differences
- Once trained, a ML model is a deterministic function of its inputs - Classical techniques of uncertainty quantification still work!
- Propagation of input uncertainties or measurement in data
- Additional ML aspects
- Include uncertainties in optimisation to maximise sensitivity (1806.00322, 1806.04743, 2110.00810)
- Apply decorrelation to reduce effect of unce simulation difference (1611.01046,1703.035
- Use parametrised networks to improve treatment of nuisance parameters (2105.08742,2109.08159)

Challenge: Uncertainties

- Need to assign uncertainty to classifier outputs / simulation data differences
- Once trained, a ML model is a deterministic function of its inputs
- Classical techniques of uncertainty quantification still work!
- Propagation of input uncertainties or measurement in data
- Additional ML aspects
- Include uncertainties in optimisation to maximise sensitivity (1806.00322, 1806.04743, 2110.00810)
- Apply decorrelation to reduce effect of uncertainties / simulation difference (1611.01046,1703.03507,2001.05310,...)
- Use parametrised networks to improve treatment of nuisance parameters
(2105.08742,2109.08159)
- Build ML models that provide uncertainties along with predictions (e.g. Bayesian architectures, 1904.10004 2003.11099)

Challenge: Diversity of Models

- Common issue of ML for searches:
- Different parameters of new physics model yield different signal properties (e.g. kinematics as function of resonance mass; dark shower properties as function of coupling strength)
- Affects performance of ML-based selection (Also true for cut-based approaches but higher sensitivity of ML-taggers will mean this effect is larger)

- Idea I - Pragmatic:

- Do "nothing", accept different sensitivity to different signal models
- Not wrong, but in general not optimal either
- Time-efficient

Challenge: Diversity of Models

- Common issue of ML for searches:
- Different parameters of new physics model yield different signal properties (e.g. kinematics as function of resonance mass; dark shower properties as function of coupling strength)
- Affects performance of ML-based selection (Also true for cut-based approaches but higher sensitivity of ML-taggers will mean this effect is larger)
- Idea I - Pragmatic
- Idea II - Extensive
- Train separate ML classifier for each signal-parameter value
- Better classification performance expected
- Overhead of book-keeping and validation

Challenge: Diversity of Models

- Common issue of ML for searches:
- Different parameters of new physics model yield different signal properties (e.g. kinematics as function of resonance mass; dark shower properties as function of coupling strength)
- Affects performance of ML-based selection (Also true for cut-based approaches but higher sensitivity of ML-taggers will mean this effect is larger)

- Idea I - Pragmatic

- Idea II - Extensive
- Idea III - Parametrisation (see 1601.07913)
- Use signal-parameter as additional input in training; sample randomly for backgrounds;
- Expect similar performance as II, but with one network
- Less bookkeeping, validation for different signal parameter values still needed

Lifetime conditioning in 1912.12238

Challenge: Diversity of Models

- Common issue of ML for searches:
- Different parameters of new physics model yield different signal properties (e.g. kinematics as function of resonance mass; dark shower properties as function of coupling strength)
- Affects performance of ML-based selection (Also true for cut-based approaches but higher sensitivity of ML-taggers will mean this effect is larger)
- Idea I - Pragmatic
- Idea II - Extensive
- Idea III - Parametrisation
- Idea IV - Anomaly searches

Discuss next

Anomaly Searches

- Motivation: Develop search-strategies that are less dependent on specific model assumptions
- Data analysis based on distributions over measured events
- Single outliers are statistically irrelevant, look for systematic over-densities

Can we use simulation to estimate backgrounds?

- Systematically compare simulation and - Estimate background from data recorded data, look for differences
- Con: Relies on imperfect simulation
- Pro: Sensitive to all types of anomalies
- Con: Need to make assumptions about signal model

- Pro: No reliance on simulation

Example: Anomaly-enhanced bump hunt (CATHODE)

- Train density estimator (a class of powerful and flexible generative model) in sideband
- Interpolate to signal region
- Sample data there
- This produces 'extrapolated-background'

Example: Anomaly-enhanced bump hunt (CATHODE)

- Train classifier to distinguish data from extrapolated background in signal region
- If these can be distinguished: potential signal present
- Excellent performance and stability compared to other methods, close to supervised classifier

Performance of Classifying Anomalies THrough Outer Density Estimation (CATHODE) algorithm (2109.00546)

Anomaly Searches for LLP

- In general: Trade-off between coverage and sensitivity
- For overviews see LHC Olympics (2101.08320) and
DarkMachines (2105.14027) community papers
- Open challenges:
- Difficult if signal is not a bump and backgrounds are hard to estimate
- Generalisation to higher number of observables and systematic understanding of sensitivity

Application of unsupervised anomaly detection to LLP search (2107.12379)

See Aris' talk in this session

Final Aside: Trigger!

- Focused on strategies for offline analysis
- Additional challenge of recording potential LLP signal events
- Both model-specific LLP triggers (2004.10744, 2103.08620) as well as anomaly based strategies (1811.10276,2005.01598) considered
- Crucial Run 3 / HL-LHC development!

Conclusions

- Deep Learning for particle physics is rapidly developing solutions to a wide range of problems
- Long-lived analyses amplify existing challenges:
- Inexact simulation / background estimation
- Deluge of signal models
- Recording data
- The tools and ideas are there, but tailoring them to long-lived analyses will take work
- Trade-off coverage and sensitivity
- Overview of ML in HEP papers: https://iml-wg.github.io/HEPML-LivingReview/

