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Overview: In general..

Date of paper

1992

300 results in 2021 so far

N

2021

Inspire Search:

("machine learning" or "deep learning" or
neural) and (hep-ex or hep-ph or hep-th)

Extremely active adaptation of
machine learning to particle physics



..and long-lived

ATLAS & CMS Run 2 Publications
e (O(40) on long-lived/disappearing/emerging jets
e Using machine learning: 8
e Standard b-tagging: 3 (2107.06092, 2104.13474, 1909.03460)
 Boosted Decision Trees (BDT) for signal identification
e New architecture development: DNN + Decorr (1912.12238)

Pheno
e O(10) publications

Much slower adaptation to
long-lived searches

Goal of this talk: Highlight status, discuss
reasons, see possible ways forward



Start with supervised learning

Supervised Learning:
Attempt to infer some target (truth label): classification, regression

Use training data with known labels
(often from Monte Carlo simulation)

Learn to predict:
(Neural network f
with parameters 6)

Y = fe(X)

observable features truth label o dicteg.ELP score
such as kinematics, (e.g. LLP or Not) P
vertices,

Target: For classification, find 8 values that minimise cross-entropy:

L= —ylog(y) — (1 —y)log(1—7)



How we can use it?

- Tagging of known SM particles
- Use case: Assume associated production LLP+X or
use to define control regions
- Rely on default flavour/resonance/.. taggers

Charged (16 features) x25—11x1 conv. 64/32/32/8 RNN 150 b
bb
Neutral (8 features) x25 1x1 conv. 32/16/4 RNN 50 Dense lepb
200 nodes x1, =
Secondary Vix (12 features) x4({1x1 conv. 64/32/32/8— RNN 50— 100 nodes x5 ,
Global variables (15 features) 9

e.g. CMS Deepdet architecture (CMS-DP-2018-058,
2008.10519.)



How we can use it?

- Tagging of known SM particles

- Reconstruction and tagging of unknown LLP

particles

- Use case: Produce/identify LLP candidates to define
signal regions on object-level

- Offers several interesting challenges e T
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e.g. Displaced vertex tagger
by CMS (1 91 21 2238) —» Forward f:::_'_'_'_": Backward th?;ucrt?on

propagation propagation
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How we can use it?

- Tagging of known SM particles

- Reconstruction and tagging of unknown LLP

particles

- Tagging of complete signal topologies
- Obtain global signal score
- Similar issues at per-particle taggers

e.g. signal-identification Boosted
Decision Tree (BDT) from ATLAS
displaced hadronic jet search
(1902.03094)
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Status

« Which ML techniques are used in LLP searches (for signal
identification)?

» Experimental results dominated by BDT-based tagging
* e.9.2012.01581,1909.01246, 1902.03094, 1806.07355

« This means decision functions using a relatively small
number (~10) of high-level features (e.g. ) as input

- Not bad per-se
(but | will still argue why architecture matters)

- jet width, defined as the pr-weighted sum of the AR between each energy cluster and the jet axis;
- jet vertex tagger (JVT) output [91];

- EpcavL/Erotal;

- jet mass, as defined by the jet clustering algorithm [92];

|nputs to hadronic- | - jet charge, defined as the momentum-weighted charge sum constructed from tracks associated with
BDT from ATLAS the jet; tracks are associated with jets using ghost association [93];

search 1909.01246 | - jet timing, defined as the energy-weighted average of the timing for each cell in the jet.

8




Question of Architecture

* Integration of symmetries of the )
data (e.g. permutation m/ _— m/ (3/:)
invariance) can increase 2 :
performance of machine g 5 £
learning models 2 Z g/(:)
+ See 1806.01261 for an [ -
excellent discussion form the
Si d e Of Computer SCi ence (a) Fully connected (b) Convolutional (¢) Recurrent
Component Entities Relations Rel. inductive bias Invariance
Fully connected Units All-to-all Weak -
Convolutional Grid elements Local Locality Spatial translation
Recurrent Timesteps Sequential Sequentiality Time translation
Graph network Nodes Edges Arbitrary Node, edge permutations

Inductive biases of standard ML architectures (1806.01261)
Consider BDT equivalent to fully-connected NN in this regard

9



Question of Architecture

* Integration of symmetries of the
data (e.g. permutation
invariance) can increase
performance of machine
learning models

- See 1806.01261 for an
excellent discussion form the
side of computer science

» Also observed for HEP
application (e.g. top tagging
benchmark)

Top Tagging Landscape ']

104 i

1
)

Background rejection

paper (1902.09914)

1

=
o
w

=
o
N

Factor 3 galn in backgr i
rejection at fixed signal = S
efficiency

ParticleNet
TreeNiN
ResNeXt
PFN

CNN
NSub(8)
LBN
NSub(6)
P-CNN
LoLa

EFN
nsub+m
EFP
TopoDNN
LDA

0.0

01 02 03 04 05 06 0.7 0.8
Signal efficiency €5



Popular Choice: Graphs

 (Consists of
Vertex: particle (e.g., four-vector)
Edge: distance (for example geometric) <1>

e \Works with:

 Data that naturally comes as a graph
(e.g. a decay sequence)

e Data embedded in some geometric space

(point cloud) Graph and update rules

e Active development of graphs on CS side, from 1806.01261
iIncreasing number of HEP applications:
1902.08570, 1902.07987, 1908.05318,
2008.03601, 2103.16701, 2101.08578, ...
See 2007.13681 for a review

(v Q<‘> /‘;

(a) Edge update (b) Node update (c¢) Global update




And for LLPs?

* Application to semi-visible jets by
Bernreuther, Finke, Kahlhoefer, Kraemer,
Alexander Mueck (2006.08639)

e Succesfully trained graph-based dd

network tO.dIS’[IHQUISh semi-visible jets Dark shower form Z°
from QCD jets

decay (1907.04346)

dd
qdsMm

dsm Z/

* Use jet-constituents kinematics as

inputs 104 Semi-visible jets, 150 GeV < prj <350 GeV
: —— DGCNN
] —— CNN
103 4 —— Lola
- _
W 102
i ]
101 4
100

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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Challenge: Background Estimation

Background Estimation in LLP Searches

Papers using Data Based Background Estimation

Many possible reasons not to trust a Monte Carlo Model

* Instrument background is hard to simulate
* Unknown physics processes
* New final state that may not be well modeled

G. Watts (UW/Seattle, CPPM)

-> See talk by Gordon right afterwards




Challenge: Uncertainties

« Need to assign uncertainty to classifier outputs / simulation data
differences

- Once trained, a ML model is a deterministic function of its inputs
- Classical techniques of uncertainty quantification still work!
* Propagation of input uncertainties or measurement in data

- Additional ML aspects
* Include uncertainties in optimisation to maximise sensitivity
(1806.00322, 1806.04743, 2110.00810)

compute via automatic differentiation

g Yo Vi Yy softmax Sp - m{,’;-}, I
81
)

Zp|xTr| - | Ty f 3 5, log £ 4 U
SIMULATOR OR NEURAL SUMMARY INFERENCE-AWARE
APPROXIMATION NETWORK STATISTIC LOSS

stochastic gradient update ¢''' = @' + n(t) Vel

14



Challenge: Uncertainties

« Need to assign uncertainty to classifier outputs / simulation data
differences

- Once trained, a ML model is a deterministic function of its inputs
- Classical techniques of uncertainty quantification still work!
* Propagation of input uncertainties or measurement in data

- Additional ML aspects
* Include uncertainties in optimisation to maximise sensitivity
(1806.00322, 1806.04743, 2110.00810)
- Apply decorrelation to reduce effect of uncertainties /
simulation difference (1611.01046,1703.03507,2001.05310,...)

L = Lclassificr(ga gt'r'uc) + A dcorr?QJtruc:O (Tﬁ’ ?7)

15



Challenge: Uncertainties

« Need to assign uncertainty to classifier outputs / simulation data
differences

- Once trained, a ML model is a deterministic function of its inputs
- Classical techniques of uncertainty quantification still work!
* Propagation of input uncertainties or measurement in data

- Additional ML aspects
* Include uncertainties in optimisation to maximise sensitivity

(1 806-00322, 1 806.04743, 2110.0081 O) —Uncertainty Aware Data Augmentation
» Apply decorrelation to reduce effect of uncq —Baseline —Adversarial

simulation difference (1611.01046,1703.03§ *°
» Use parametrised networks to improve

treatment of nuisance parameters
(2105.08742,2109.08159)

00]

NLL - min(NLL)
(o)}

050 0.75 1.00 1.25 1.50 1.75
16 u




Challenge: Uncertainties

« Need to assign uncertainty to classifier outputs / simulation data
differences

- Once trained, a ML model is a deterministic function of its inputs
- Classical techniques of uncertainty quantification still work!
* Propagation of input uncertainties or measurement in data

- Additional ML aspects

* Include uncertainties in optimisation to maximise sensitivity
(1806.00322, 1806.04743, 2110.00810)

« Apply decorrelation to reduce effect of uncertainties /
simulation difference (1611.01046,1703.03507,2001.05310,...)

» Use parametrised networks to improve
treatment of nuisance parameters
(2105.08742,2109.08159)

 Build ML models that provide
uncertainties along with predictions
(e.g. Bayesian architectures, 1904.10004 2003.11099)

17




Challenge: Diversity of Models

- Common issue of ML for searches:
» Different parameters of new physics model yield different signal properties

(e.g. kinematics as function of resonance mass; dark shower properties as

function of coupling strength)
- Affects performance of ML-based selection
(Also true for cut-based approaches but higher sensitivity of ML-taggers will

mean this effect is larger)

* ldea | - Pragmatic:
* Do “nothing”, accept different sensitivity to different signal models

* Not wrong, but in general not optimal either
* Time-efficient

18



Challenge: Diversity of Models

- Common issue of ML for searches:
» Different parameters of new physics model yield different signal properties

(e.g. kinematics as function of resonance mass; dark shower properties as
function of coupling strength)

- Affects performance of ML-based selection
(Also true for cut-based approaches but higher sensitivity of ML-taggers will

mean this effect is larger)

 ldea | - Pragmatic

- ldea Il - Extensive
- Train separate ML classifier for each signal-parameter value

- Better classification performance expected
- Overhead of book-keeping and validation

19



Challenge: Diversity of Models

- Common issue of ML for searches:

» Different parameters of new physics model yield different signal properties
(e.g. kinematics as function of resonance mass; dark shower properties as
function of coupling strength)

- Affects performance of ML-based selection
(Also true for cut-based approaches but higher sensmwty of ML-taggers will
mean this effect is larger) e — | < B L

- Idea | - Pragmatic il i o [l
- Idea Il - Extensive st | - [E[E] 28] - 18] | BB
- Idea Il - Parametrisation (see 1601.07913) s | EVEVEIE) | | I e
- Use signal-parameter as additional input — 5** e
in training; sample randomly for backgrounds; il
. Expect similar performance as I, S VY B Ir__/_J
but with one network \. .
"N Backward Featre [N Label [N Domain
* Less bookkeeping, validation
for different signal parameter values still needed Lifetime conditioning in

1912.12238
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Challenge: Diversity of Models

- Common issue of ML for searches:

» Different parameters of new physics model yield different signal properties
(e.g. kinematics as function of resonance mass; dark shower properties as
function of coupling strength)

- Affects performance of ML-based selection
(Also true for cut-based approaches but higher sensitivity of ML-taggers will

mean this effect is larger)

* ldea | - Pragmatic

 ldea Il - Extensive

 Idea lll - Parametrisation

 ldea IV - Anomaly searches
Discuss next

21



Anomaly Searches

« Motivation: Develop search-strategies that are less dependent on specific
model assumptions

- Data analysis based on distributions over measured events
» Single outliers are statistically irrelevant, look for systematic over-densities

Can we use simulation to estimate backgrounds?

o Systematically compare simulation and e Estimate background from data
recorded data, look for differences e Con: Need to make

e Con: Relies on imperfect simulation assumptions about signal model

e Pro: Sensitive to all types of anomalies ® Pro: No reliance on simulation

1@40x40 10@40x40 10@20x20 5@20x20 400 100 100 400 5@20x20 5@40x40 10@40x40 1@40x40

J0.08

CCO0O00000000000000000000O Py =
%1014|||||||||||||||||||||||.| =
S 108F CMS —- Data I Single top 3
o) i
a_) 1]%1121 Preliminary %\[/)Vr‘;lj-eYt;n =K/|:|Jt?t}§son X Mixed Sample 1 Mixed Sample 2 5 SignalRegion
% 1010 35.9fb™" (13 TeV) B Muitjet Higgs : ( ) ( ] : - HEEl Background
‘g 109 Exclusive, 1w tt ..1i @@ @ L. . Signagl
4 | 83883 [82888| I
10 1MuSic search Slelelele,
1 I ©0000 | | ©0®
! -~ 1(2010.02984)
. \0
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Example: Anomaly-enhanced bump hunt
(CATHODE)

Train density estimator

e \

and sample here —_____

T
.\\\\

>

SB § SR § SB m

Pdata(|m € SB)
= pg(z|m € SB)

Pdata(|m € SB)

:pbg(x‘m c SB) pdata(x|m € SR)

* Train density estimator (a class of powerful and
flexible generative model) in sideband

* |Interpolate to signal region

e Sample data there

* This produces ‘extrapolated-background’

23



Example: Anomaly-enhanced bump hunt
(CATHODE)

* Train classifier to distinguish data from extrapolated
background in signal region

* |f these can be distinguished: potential signal present

* Excellent performance and stability compared to
other methods, close to supervised classifier

0.0 Signal Region
| —— Supervised
17.5 A — l|dealized AD
o —— CATHODE
g 15.0 | CWola
g . —— ANODE
o L - e
£ 10,0
S
g 7.51 Performance of
€ ‘o Classifying Anomalies
o THrough Outer Density
2.5 - Estimation (CATHODE)
Y O P L L R algorlthm (210900546)

1.0

Signal Efficiency (True Positive%ate)



Anomaly Searches for LLP

* In general: Trade-off between coverage and sensitivity

* For overviews see
LHC Olympics (2101.08320) and
DarkMachines (2105.14027)
community papers
* Open challenges:
- Difficult if signal is not a bump
and backgrounds are hard to
estimate

 Generalisation to higher number of

observables and systematic
understanding of sensitivity

Application of unsupervised
anomaly detection to LLP search

(2107.12379)
See Aris’ talk in this session
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PREPARED FOR SUBMISSION TO JHEP

Unsupervised Hadronic SUEP at the LHC

Jared Barron,” David Curtin,® Gregor Kasieczka,” Tilman Plehn,® and Aris
Spourdalakis®

“ Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7
b Institut fiir Experimentalphysik, Universitat Hamburg, Germany

“Institut fiir Theoretische Physik, Universitit Heidelberg, Germany

E-mail: jared.barron@mail.utoronto.ca, aspourda@physics.utoronto.ca,
gregor.kasieczka@cern.ch , plehn@uni-heidelberg.de,
aspourda@physics.utoronto.ca

ABSTRACT: Confining dark sectors with pseudo-conformal dynamics produce SUEPs,
or Soft Unclustered Energy Patterns, at colliders: isotropic dark hadrons with soft and
democratic energies. We target the experimental nightmare scenario, SUEPs in exotic
Higgs decays, where all dark hadrons decay promptly to SM hadrons. First, we identify
three promising observables: the charged particle multiplicity, the event ring isotropy,
and the matrix of geometric distances between charged tracks. Their patterns can be
exploited through a cut-and-count search, supervised machine learning, or an unsupervised
autoencoder. We find that the HL-LHC will probe exotic Higgs branching ratios at the per-
cent level, even without a detailed knowledge of the signal features. Our techniques can be
applied to other SUEP searches, especially the unsupervised strategy, which is independent
of overly specific model assumptions and the corresponding precision simulations.




Final Aside: Trigger!

» Focused on strategies for offline analysis

- Additional challenge of recording potential LLP signal events

- Both model-specific LLP triggers (2004.10744, 2103.08620)
as well as anomaly based strategies
(1811.10276,2005.01598) considered

* Crucial Run 3 / HL-LHC development!

detector ‘ high-level data
collisions L1 trigger trigger analysis

[ — ———
40,000,000 100,000 1000
events/sec events/sec events/sec

CERN Courier / Pierini (https://
cerncourier.com/a/hunting-
26 anomalies-with-an-ai-trigger/)



https://cerncourier.com/a/hunting-anomalies-with-an-ai-trigger/
https://cerncourier.com/a/hunting-anomalies-with-an-ai-trigger/
https://cerncourier.com/a/hunting-anomalies-with-an-ai-trigger/
https://cerncourier.com/a/hunting-anomalies-with-an-ai-trigger/

Our intro book:

Conclusions

DEEP

Deep Learning for particle physics is rapidly LEARNlNG
developing solutions to a wide range of "PHYSICS
problems RESEARCH
Long-lived analyses amplify existing @
challenges:

* |nexact simulation / background estimation

MARTIN ERDMANN | JONAS GLOMBITZA

* Deluge of signal models GRG0 KASEEZEN | UNE KLENBOT

¢ qecord I ng data “pWorld Scientific

The tools and ideas are there, but tailoring httos://worldscientific.com/
them to long-lived analyses will take work worldscibooks/10.1142/12294

* Trade-off coverage and sensitivity

Overview of ML in HEP papers:
https://iml-wg.github.io/HEPML-LivingReview/

Thank you!
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