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Overview: In general..

Inspire Search: 

("machine learning" or "deep learning" or 
neural) and (hep-ex or hep-ph or hep-th)

300 results in 2021 so far

Extremely active adaptation of 
machine learning to particle physics 
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..and long-lived

ATLAS & CMS Run 2 Publications 
• O(40) on long-lived/disappearing/emerging jets

• Using machine learning: 8

• Standard b-tagging: 3 (2107.06092, 2104.13474, 1909.03460)

• Boosted Decision Trees (BDT) for signal identification

• New architecture development: DNN + Decorr (1912.12238) 

Pheno 
• O(10) publications 

Much slower adaptation to  
long-lived searches 

Goal of this talk: Highlight status, discuss 
reasons, see possible ways forward 



Supervised Learning: 
Attempt to infer some target (truth label): classification, regression


Use training data with known labels 
(often from Monte Carlo simulation)

observable features 
such as kinematics, 
vertices, 

truth label  
(e.g. LLP or Not)

Learn to predict: 
(Neural network f  
with parameters θ) 

e.g.  
predicted LLP score

x
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Start with supervised learning

Target: For classification, find θ values that minimise cross-entropy:

L = �y log (ŷ)� (1� y) log (1� ŷ)
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How we can use it?
• Tagging of known SM particles 
• Use case: Assume associated production LLP+X or 

use to define control regions

• Rely on default flavour/resonance/.. taggers 


e.g. CMS DeepJet architecture (CMS-DP-2018-058,  
2008.10519.)
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How we can use it?
• Tagging of known SM particles 

• Reconstruction and tagging of unknown LLP 
particles 
• Use case: Produce/identify LLP candidates to define 

signal regions on object-level

• Offers several interesting challenges 

(discussed later) 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secondary vertices. Zero padding is used to accommodate the variable numbers of PF candi-
dates and secondary vertices.

Each charged PF candidate is described by the following features: the pT relative and perpen-
dicular to the jet axis, the Dh with respect to the jet axis, the track quality, and the transverse
and three-dimensional impact parameters (and their significances) of the track. Each neutral
PF candidate is described by its energy, the fractions of its energy deposited within the ECAL
and HCAL subdetectors, the compatibility with the photon hypothesis, the compatibility with
the pileup hypothesis as determined by the PUPPI algorithm [75, 76]. Charged and neutral
PF candidates are also described by the collinearity with respect to the jet axis and the near-
est secondary vertex. The features that describe each reconstructed secondary vertex include
the three-dimensional displacement (and significance) with respect to the primary pp colli-
sion vertex, the number of associated tracks, and the following quantities determined from the
four-momenta of the associated tracks: pT, the Dh with respect to the jet axis, and the invariant
mass. The global jet features comprise the jet momentum and pseudorapidity, the number of
constituent PF candidates, the number of reconstructed secondary vertices, and several high-
level engineered features used by the CSV b tagging algorithm [5].
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Figure 2: An overview of the DNN architecture, which comprises convolutional and dense lay-
ers; the numbers of filters and nodes are indicated. Dropout layers and activation functions
are not shown. The input features are grouped by object type and (m ⇥ n) indicates the max-
imum number of objects (m) and the number of features per object (n). The gradients of the
class (Lclass) and domain (Ldomain) losses with respect to the weights ~w, used during backward
propagation, are shown.

Four sequential layers of one-dimensional convolutions with a kernel size of one are used, with
each layer comprising 64, 32, 16, 8, or 4 filters depending on the group of input features. Per
particle candidate or vertex, each convolutional layer transforms the features from the pre-
ceding layer according to its filter size. By choosing a small filter size for the final layer, the
overall operation can be viewed as a compression. After each layer, a leaky rectified linear

e.g. Displaced vertex tagger 
by CMS (1912.12238)
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How we can use it?
• Tagging of known SM particles 

• Reconstruction and tagging of unknown LLP 
particles 

• Tagging of complete signal topologies 
• Obtain global signal score

• Similar issues at per-particle taggers
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Figure 5: Distribution of the low-ET per-event BDT (left) and high-ET per-event BDT (right) on main data, BIB data
and five signal samples after preselection.

was very useful for reducing the multijet background with only a small e�ect on the e�ciency of low-m�
models. However, it significantly lowered the e�ciency for the high-m� models due to larger portions
of the high-pT jets escaping the calorimeters (punch-through), generating fake E

miss
T . The elimination of

this requirement improves the sensitivity of the analysis to the high-m� models by a large factor, while
the improvement is less noticeable for low-m�. The following additional requirements are applied for the
high-ET selection:

Õ
j1,j2 log10(EH/EEM) > 1, pT(j1) > 160 GeV, pT(j2) > 100 GeV, and H

miss
T /HT < 0.6.

The low-ET selection requires
Õ

j1,j2 log10(EH/EEM) > 2.5, pT(j1) > 80 GeV, and pT(j2) > 60 GeV.

5 Background estimation

The data-driven ABCD method is used to estimate the contribution from the dominant background (SM
multijet events) to the final selection. The standard ABCD method relies on the assumption that the
distribution of background events can be factorised in the plane of two relatively uncorrelated variables. In
this plane, the method uses three control regions (B, C and D) to estimate the contribution of background
events in the search region (A). If all the signal events are concentrated in region A, the number of
background events in region A can be predicted from the population of the other three regions using
NA = (NB · NC)/ND, where NX is the number of background events in region X . In reality, some signal
events may lie outside of region A. A modified ABCD method is used to account for non-zero signal
contamination in regions B, C and D. The modified ABCD method involves fitting to background and
signal models simultaneously. The background component of the yields in regions A, B, C and D are
constrained to obey the standard ABCD relation, within the bounds of the ABCD method uncertainty
(described below). In the modified ABCD method, the signal strength is also included as a parameter in
the fit, which may uniformly scale the signal yield in each region. The good performance of the method
is only ensured in the presence of a single source of background. In this case the background must be
confirmed to be dominated by SM multijet events. Two checks are performed to ensure that the contribution

12

e.g. signal-identification Boosted 
Decision Tree (BDT) from ATLAS 

displaced hadronic jet search 
(1902.03094) 
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Status
• Which ML techniques are used in LLP searches (for signal 

identification)?  

• Experimental results dominated by BDT-based tagging

• e.g. 2012.01581,1909.01246, 1902.03094, 1806.07355  

• This means decision functions using a relatively small 
number (~10) of  high-level features (e.g. ) as input 

• Not bad per-se  
(but I will still argue why architecture matters)

point as the origin of the muon [90]. The di�erence in time measured by the two layers in the middle
station and in the outer station is thus useful for discriminating between cosmic-ray muons and collision
muons. Since cosmic-ray muons are downward going, their arrival times in the layers in the upper part of
the MS (0 < � < ⇡) are di�erent from those of collision muons, which are upward-going in this part of
the detector. In the lower part of the MS (⇡ < � < 2⇡), cosmic-ray muons and collision muons travel
downwards, making hit timing less useful for separating between them.

The cosmic dataset and the signal MC sample H ! 2�d + X with mH = 125 GeV are used for the training
of the BDT. The gain in signal significance obtained from dedicated BDT training with the other signal MC
samples is found to be negligible. Figure 2 (left) shows the BDT output (µBDT) for the constituent muons
of the µDPJs: the distribution provides a clear separation between signal and background muons from
cosmic rays. The µBDT output is required to be µBDT > 0.21; the value is chosen to yield the highest
signal significance, S/

p
S + B, where S is the number of signal events and B the number of background

events.

5.3 Hadronic-DPJ selection

Signal jets are discriminated from multi-jets using a second classifier also based on a BDT (hBDT). The
following variables are used as input to the hBDT:

- jet width, defined as the pT-weighted sum of the �R between each energy cluster and the jet axis;

- jet vertex tagger (JVT) output [91];

- EECAL/Etotal;

- jet mass, as defined by the jet clustering algorithm [92];

- jet charge, defined as the momentum-weighted charge sum constructed from tracks associated with
the jet; tracks are associated with jets using ghost association [93];

- jet timing, defined as the energy-weighted average of the timing for each cell in the jet.

The JVT is designed to di�erentiate between pile-up jets and jets originating from the PV. The algorithm
uses a multivariate combination of track variables that are sensitive to pile-up. Since jets produced in the
hadronic calorimeter have a JVT output distribution similar to that of pile-up jets, the JVT output is used
for selection of hadronic-DPJs. Possible pile-up jets contamination is reduced by the analysis selection to a
negligible level.

The signal MC sample H ! 2�d + X with mH = 125 GeV and the simulated multi-jet background events
are used for the BDT training. The gain in signal significance obtained from dedicated BDT training with
the other signal MC samples is found to be negligible. Figure 2 (right) shows the BDT output for the hDPJs
(hBDT). The peak at ⇠ –0.2 in the BDT distributions corresponds to jets with a JVT output that indicates
a low pile-up probability. The hBDT output is required to be hBDT > 0.91; the value is chosen to yield
the highest signal significance.

8

Inputs to hadronic-
BDT from ATLAS 

search 1909.01246
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Figure 1: Reuse and sharing in common deep learning building blocks. (a) Fully connected layer,
in which all weights are independent, and there is no sharing. (b) Convolutional layer, in which
a local kernel function is reused multiple times across the input. Shared weights are indicated by
arrows with the same color. (c) Recurrent layer, in which the same function is reused across di↵erent
processing steps.

neighborhoods, which diminishes with distance, and because the statistics are mostly stationary
across an image (Table 1).

2.1.3 Recurrent layers

A third common building block is a recurrent layer (Elman, 1990), which is implemented over a
sequence of steps. Here, we can view the inputs and hidden states at each processing step as the
entities, and the Markov dependence of one step’s hidden state on the previous hidden state and
the current input, as the relations. The rule for combining the entities takes a step’s inputs and
hidden state as arguments to update the hidden state. The rule is reused over each step (Figure 1c),
which reflects the relational inductive bias of temporal invariance (similar to a CNN’s translational
invariance in space). For example, the outcome of some physical sequence of events should not
depend on the time of day. RNNs also carry a bias for locality in the sequence via their Markovian
structure (Table 1).

2.2 Computations over sets and graphs

While the standard deep learning toolkit contains methods with various forms of relational inductive
biases, there is no “default” deep learning component which operates on arbitrary relational structure.
We need models with explicit representations of entities and relations, and learning algorithms which
find rules for computing their interactions, as well as ways of grounding them in data. Importantly,
entities in the world (such as objects and agents) do not have a natural order; rather, orderings
can be defined by the properties of their relations. For example, the relations between the sizes of
a set of objects can potentially be used to order them, as can their masses, ages, toxicities, and
prices. Invariance to ordering—except in the face of relations—is a property that should ideally be
reflected by a deep learning component for relational reasoning.

Sets are a natural representation for systems which are described by entities whose order is
undefined or irrelevant; in particular, their relational inductive bias does not come from the presence
of something, but rather from the absence. For illustration, consider the task of predicting the center

7
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Question of Architecture
• Integration of symmetries of the 

data (e.g. permutation 
invariance) can increase 
performance of machine 
learning models


• See 1806.01261 for an 
excellent discussion form the 
side of computer science

Component Entities Relations Rel. inductive bias Invariance

Fully connected Units All-to-all Weak -
Convolutional Grid elements Local Locality Spatial translation
Recurrent Timesteps Sequential Sequentiality Time translation
Graph network Nodes Edges Arbitrary Node, edge permutations

Table 1: Various relational inductive biases in standard deep learning components. See also Section 2.

To explore the relational inductive biases expressed within various deep learning methods, we
must identify several key ingredients, analogous to those in Box 1: what are the entities, what are
the relations, and what are the rules for composing entities and relations, and computing their
implications? In deep learning, the entities and relations are typically expressed as distributed
representations, and the rules as neural network function approximators; however, the precise forms
of the entities, relations, and rules vary between architectures. To understand these di↵erences
between architectures, we can further ask how each supports relational reasoning by probing:

� The arguments to the rule functions (e.g., which entities and relations are provided as input).
� How the rule function is reused, or shared, across the computational graph (e.g., across di↵erent

entities and relations, across di↵erent time or processing steps, etc.).
� How the architecture defines interactions versus isolation among representations (e.g., by

applying rules to draw conclusions about related entities, versus processing them separately).

2.1 Relational inductive biases in standard deep learning building blocks

2.1.1 Fully connected layers

Perhaps the most common building block is a fully connected layer (Rosenblatt, 1961). Typically
implemented as a non-linear vector-valued function of vector inputs, each element, or “unit”, of
the output vector is the dot product between a weight vector, followed by an added bias term, and
finally a non-linearity such as a rectified linear unit (ReLU). As such, the entities are the units in
the network, the relations are all-to-all (all units in layer i are connected to all units in layer j),
and the rules are specified by the weights and biases. The argument to the rule is the full input
signal, there is no reuse, and there is no isolation of information (Figure 1a). The implicit relational
inductive bias in a fully connected layer is thus very weak: all input units can interact to determine
any output unit’s value, independently across outputs (Table 1).

2.1.2 Convolutional layers

Another common building block is a convolutional layer (Fukushima, 1980; LeCun et al., 1989). It is
implemented by convolving an input vector or tensor with a kernel of the same rank, adding a bias
term, and applying a point-wise non-linearity. The entities here are still individual units (or grid
elements, e.g. pixels), but the relations are sparser. The di↵erences between a fully connected layer
and a convolutional layer impose some important relational inductive biases: locality and translation
invariance (Figure 1b). Locality reflects that the arguments to the relational rule are those entities in
close proximity with one another in the input signal’s coordinate space, isolated from distal entities.
Translation invariance reflects reuse of the same rule across localities in the input. These biases
are very e↵ective for processing natural image data because there is high covariance within local

6

Inductive biases of standard ML architectures (1806.01261)

Consider BDT equivalent to fully-connected NN in this regard
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Question of Architecture
SciPost Physics Submission

Figure 5: ROC curves for all algorithms evaluated on the same test sample, shown as the
AUC ensemble median of multiple trainings. More precise numbers as well as uncertainty
bands given by the ensemble analysis are given in Tab. 1.

Instead of extracting these performance measures from single models we can use ensembles.
For this purpose we train nine models for each tagger and define 84 ensemble taggers, each time
combining six of them. They allow us to evaluate the spread of the ensemble taggers and define
mean-of-ensemble and median-of-ensemble results. We find that ensembles leads to a 5 ... 15%
improvement in performance, depending on the algorithm. For the uncertainty estimate of the
background rejection we remove the outliers. In Tab. 1 we see that the background rejection
varies from around 1/600 to better than 1/1000. For the ensemble tagger the ParticleNet,
ResNeXt, TreeNiN, and PFN approaches again lead to the best results. Phrased in terms
of the improvement in the signal-to-background ratio they give factors ✏S/✏B > 300, vastly
exceeding the current top tagging performance in ATLAS and CMS.

Altogether, in Fig. 5 and Tab. 1 we see that some of the physics-motivated setups remain
competitive with the technically much more advanced ResNeXt and ParticleNet networks.
This suggests that even for a straightforward task like top tagging in fat jets we can develop
e�cient physics-specific tools. While their performance does not quite match the state-of-
the-art standard networks, it is close enough to test both approaches on key requirements in
particle physics, like treatment of uncertainties, stability with respect to detector e↵ects, etc.

The obvious question in any deep-learning analysis is if the tagger captures all relevant
information. At this point we have checked that including full or partial information on

15

Factor 3 gain in background 
rejection at fixed signal 
efficiency

Top Tagging Landscape 
paper  (1902.09914)

• Integration of symmetries of the 
data (e.g. permutation 
invariance) can increase 
performance of machine 
learning models


• See 1806.01261 for an 
excellent discussion form the 
side of computer science


• Also observed for HEP 
application (e.g. top tagging 
benchmark)



Popular Choice: Graphs
• Consists of 

Vertex: particle (e.g., four-vector) 
Edge: distance (for example geometric)


• Works with:

• Data that naturally comes as a graph  

(e.g. a decay sequence)

• Data embedded in some geometric space 

(point cloud)

• Active development of graphs on CS side, 

increasing number of HEP applications: 
1902.08570, 1902.07987, 1908.05318, 
2008.03601, 2103.16701, 2101.08578, …  
See 2007.13681 for a review

Box 3: Our definition of “graph”

vi
ek
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Here we use “graph” to mean a directed, attributed multi-graph with a global attribute. In our
terminology, a node is denoted as vi, an edge as ek, and the global attributes as u. We also use
sk and rk to indicate the indices of the sender and receiver nodes (see below), respectively, for
edge k. To be more precise, we define these terms as:

Directed : one-way edges, from a “sender” node to a “receiver” node.
Attribute : properties that can be encoded as a vector, set, or even another graph.
Attributed : edges and vertices have attributes associated with them.
Global attribute : a graph-level attribute.
Multi-graph : there can be more than one edge between vertices, including self-edges.

Figure 2 shows a variety of di↵erent types of graphs corresponding to real data that we may be
interested in modeling, including physical systems, molecules, images, and text.

which takes a graph as input, performs computations over the structure, and returns a graph as
output. As described in Box 3, entities are represented by the graph’s nodes, relations by the edges,
and system-level properties by global attributes. The GN framework’s block organization emphasizes
customizability and synthesizing new architectures which express desired relational inductive biases.
The key design principles are: Flexible representations (see Section 4.1); Configurable within-block
structure (see Section 4.2); and Composable multi-block architectures (see Section 4.3).

We introduce a motivating example to help make the GN formalism more concrete. Consider
predicting the movements a set of rubber balls in an arbitrary gravitational field, which, instead of
bouncing against one another, each have one or more springs which connect them to some (or all) of
the others. We will refer to this running example throughout the definitions below, to motivate the
graph representation and the computations operating over it. Figure 2 depicts some other common
scenarios that can be represented by graphs and reasoned over using graph networks.

3.2.1 Definition of “graph”

Within our GN framework, a graph is defined as a 3-tuple G = (u, V, E) (see Box 3 for details of
graph representations). The u is a global attribute; for example, u might represent the gravitational
field. The V = {vi}i=1:Nv is the set of nodes (of cardinality Nv), where each vi is a node’s attribute.
For example, V might represent each ball, with attributes for position, velocity, and mass. The
E = {(ek, rk, sk)}k=1:Ne is the set of edges (of cardinality N e), where each ek is the edge’s attribute,
rk is the index of the receiver node, and sk is the index of the sender node. For example, E might
represent the presence of springs between di↵erent balls, and their corresponding spring constants.
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(a) Edge update
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<latexit sha1_base64="TmBm7ikN3ChoJpDcsfwhm1T5rLk=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvYVZkRQZcFNy4r2Ae0Q8mkd9rQTGZMMoUy9DvcuFDErR/jzr8x03ahrQcCh3Pu5Z6cIBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxXe63J6g0j+WjmSboR3QoecgZNVbyexE1oyDMcHbZH/fLFbfmzkHWibckFVii0S9/9QYxSyOUhgmqdddzE+NnVBnOBM5KvVRjQtmYDrFrqaQRaj+bh56RC6sMSBgr+6Qhc/X3RkYjradRYCfzkHrVy8X/vG5qwls/4zJJDUq2OBSmgpiY5A2QAVfIjJhaQpniNithI6ooM7anki3BW/3yOmld1Ty35j1cV+rVZR1FOINzqIIHN1CHe2hAExg8wTO8wpszcV6cd+djMVpwljun8AfO5w/CAJH+</latexit><latexit sha1_base64="TmBm7ikN3ChoJpDcsfwhm1T5rLk=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvYVZkRQZcFNy4r2Ae0Q8mkd9rQTGZMMoUy9DvcuFDErR/jzr8x03ahrQcCh3Pu5Z6cIBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxXe63J6g0j+WjmSboR3QoecgZNVbyexE1oyDMcHbZH/fLFbfmzkHWibckFVii0S9/9QYxSyOUhgmqdddzE+NnVBnOBM5KvVRjQtmYDrFrqaQRaj+bh56RC6sMSBgr+6Qhc/X3RkYjradRYCfzkHrVy8X/vG5qwls/4zJJDUq2OBSmgpiY5A2QAVfIjJhaQpniNithI6ooM7anki3BW/3yOmld1Ty35j1cV+rVZR1FOINzqIIHN1CHe2hAExg8wTO8wpszcV6cd+djMVpwljun8AfO5w/CAJH+</latexit><latexit sha1_base64="TmBm7ikN3ChoJpDcsfwhm1T5rLk=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvYVZkRQZcFNy4r2Ae0Q8mkd9rQTGZMMoUy9DvcuFDErR/jzr8x03ahrQcCh3Pu5Z6cIBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxXe63J6g0j+WjmSboR3QoecgZNVbyexE1oyDMcHbZH/fLFbfmzkHWibckFVii0S9/9QYxSyOUhgmqdddzE+NnVBnOBM5KvVRjQtmYDrFrqaQRaj+bh56RC6sMSBgr+6Qhc/X3RkYjradRYCfzkHrVy8X/vG5qwls/4zJJDUq2OBSmgpiY5A2QAVfIjJhaQpniNithI6ooM7anki3BW/3yOmld1Ty35j1cV+rVZR1FOINzqIIHN1CHe2hAExg8wTO8wpszcV6cd+djMVpwljun8AfO5w/CAJH+</latexit><latexit sha1_base64="TmBm7ikN3ChoJpDcsfwhm1T5rLk=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvYVZkRQZcFNy4r2Ae0Q8mkd9rQTGZMMoUy9DvcuFDErR/jzr8x03ahrQcCh3Pu5Z6cIBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxXe63J6g0j+WjmSboR3QoecgZNVbyexE1oyDMcHbZH/fLFbfmzkHWibckFVii0S9/9QYxSyOUhgmqdddzE+NnVBnOBM5KvVRjQtmYDrFrqaQRaj+bh56RC6sMSBgr+6Qhc/X3RkYjradRYCfzkHrVy8X/vG5qwls/4zJJDUq2OBSmgpiY5A2QAVfIjJhaQpniNithI6ooM7anki3BW/3yOmld1Ty35j1cV+rVZR1FOINzqIIHN1CHe2hAExg8wTO8wpszcV6cd+djMVpwljun8AfO5w/CAJH+</latexit>v�
i

<latexit sha1_base64="eeLXdOBZMDToGpT2JKCAlGanLL8=">AAAB9HicdVDLSgMxFL3js9ZX1aWbYBG7GjK1xXZXcOOygn1AO5RMmmlDMw+TTKEM/Q43LhRx68e482/MtBVU9EDgcM693JPjxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo7bKkokZS0aiUh2PaKY4CFraa4F68aSkcATrONNrjO/M2VS8Si807OYuQEZhdznlGgjuf2A6LHnp9P5xYAPCkVsOxVcrpYRtqv1Oq7UDalVL3EZI8fGCxRhheag8N4fRjQJWKipIEr1HBxrNyVScyrYPN9PFIsJnZAR6xkakoApN12EnqNzowyRH0nzQo0W6veNlARKzQLPTGYh1W8vE//yeon2a27KwzjRLKTLQ34ikI5Q1gAacsmoFjNDCJXcZEV0TCSh2vSUNyV8/RT9T9pl2zFd3VaKjdKqjhycwhmUwIEraMANNKEFFO7hAZ7g2Zpaj9aL9bocXbNWOyfwA9bbJztsklE=</latexit><latexit sha1_base64="eeLXdOBZMDToGpT2JKCAlGanLL8=">AAAB9HicdVDLSgMxFL3js9ZX1aWbYBG7GjK1xXZXcOOygn1AO5RMmmlDMw+TTKEM/Q43LhRx68e482/MtBVU9EDgcM693JPjxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo7bKkokZS0aiUh2PaKY4CFraa4F68aSkcATrONNrjO/M2VS8Si807OYuQEZhdznlGgjuf2A6LHnp9P5xYAPCkVsOxVcrpYRtqv1Oq7UDalVL3EZI8fGCxRhheag8N4fRjQJWKipIEr1HBxrNyVScyrYPN9PFIsJnZAR6xkakoApN12EnqNzowyRH0nzQo0W6veNlARKzQLPTGYh1W8vE//yeon2a27KwzjRLKTLQ34ikI5Q1gAacsmoFjNDCJXcZEV0TCSh2vSUNyV8/RT9T9pl2zFd3VaKjdKqjhycwhmUwIEraMANNKEFFO7hAZ7g2Zpaj9aL9bocXbNWOyfwA9bbJztsklE=</latexit><latexit sha1_base64="eeLXdOBZMDToGpT2JKCAlGanLL8=">AAAB9HicdVDLSgMxFL3js9ZX1aWbYBG7GjK1xXZXcOOygn1AO5RMmmlDMw+TTKEM/Q43LhRx68e482/MtBVU9EDgcM693JPjxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo7bKkokZS0aiUh2PaKY4CFraa4F68aSkcATrONNrjO/M2VS8Si807OYuQEZhdznlGgjuf2A6LHnp9P5xYAPCkVsOxVcrpYRtqv1Oq7UDalVL3EZI8fGCxRhheag8N4fRjQJWKipIEr1HBxrNyVScyrYPN9PFIsJnZAR6xkakoApN12EnqNzowyRH0nzQo0W6veNlARKzQLPTGYh1W8vE//yeon2a27KwzjRLKTLQ34ikI5Q1gAacsmoFjNDCJXcZEV0TCSh2vSUNyV8/RT9T9pl2zFd3VaKjdKqjhycwhmUwIEraMANNKEFFO7hAZ7g2Zpaj9aL9bocXbNWOyfwA9bbJztsklE=</latexit><latexit sha1_base64="eeLXdOBZMDToGpT2JKCAlGanLL8=">AAAB9HicdVDLSgMxFL3js9ZX1aWbYBG7GjK1xXZXcOOygn1AO5RMmmlDMw+TTKEM/Q43LhRx68e482/MtBVU9EDgcM693JPjxYIrjfGHtba+sbm1ndvJ7+7tHxwWjo7bKkokZS0aiUh2PaKY4CFraa4F68aSkcATrONNrjO/M2VS8Si807OYuQEZhdznlGgjuf2A6LHnp9P5xYAPCkVsOxVcrpYRtqv1Oq7UDalVL3EZI8fGCxRhheag8N4fRjQJWKipIEr1HBxrNyVScyrYPN9PFIsJnZAR6xkakoApN12EnqNzowyRH0nzQo0W6veNlARKzQLPTGYh1W8vE//yeon2a27KwzjRLKTLQ34ikI5Q1gAacsmoFjNDCJXcZEV0TCSh2vSUNyV8/RT9T9pl2zFd3VaKjdKqjhycwhmUwIEraMANNKEFFO7hAZ7g2Zpaj9aL9bocXbNWOyfwA9bbJztsklE=</latexit>

(b) Node update

u�
<latexit sha1_base64="RuJ/WOWmv0qWsx0aAsZGj4qvbr4=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiDmNMxk0cwt4MVjBLPAZAg9nZ6kSc9Cd40YhnyGFw+KePVrvPk3dhZBRR8UPN6roqqenwiuwLI+jNza+sbmVn67sLO7t39QPDzqqDiVlLVpLGLZ84ligkesDRwE6yWSkdAXrOtPruZ+945JxePoFqYJ80IyinjAKQEtuX1g9+AHWTo7HxRLllm5aFTqFrbMulOrNmqaNCpO1XGwbVoLlNAKrUHxvT+MaRqyCKggSrm2lYCXEQmcCjYr9FPFEkInZMRcTSMSMuVli5Nn+EwrQxzEUlcEeKF+n8hIqNQ09HVnSGCsfntz8S/PTSFoeBmPkhRYRJeLglRgiPH8fzzkklEQU00IlVzfiumYSEJBp1TQIXx9iv8nnYppW6Z9Uys1y6s48ugEnaIystElaqJr1EJtRFGMHtATejbAeDRejNdla85YzRyjHzDePgEJTZGr</latexit><latexit sha1_base64="RuJ/WOWmv0qWsx0aAsZGj4qvbr4=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiDmNMxk0cwt4MVjBLPAZAg9nZ6kSc9Cd40YhnyGFw+KePVrvPk3dhZBRR8UPN6roqqenwiuwLI+jNza+sbmVn67sLO7t39QPDzqqDiVlLVpLGLZ84ligkesDRwE6yWSkdAXrOtPruZ+945JxePoFqYJ80IyinjAKQEtuX1g9+AHWTo7HxRLllm5aFTqFrbMulOrNmqaNCpO1XGwbVoLlNAKrUHxvT+MaRqyCKggSrm2lYCXEQmcCjYr9FPFEkInZMRcTSMSMuVli5Nn+EwrQxzEUlcEeKF+n8hIqNQ09HVnSGCsfntz8S/PTSFoeBmPkhRYRJeLglRgiPH8fzzkklEQU00IlVzfiumYSEJBp1TQIXx9iv8nnYppW6Z9Uys1y6s48ugEnaIystElaqJr1EJtRFGMHtATejbAeDRejNdla85YzRyjHzDePgEJTZGr</latexit><latexit sha1_base64="RuJ/WOWmv0qWsx0aAsZGj4qvbr4=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiDmNMxk0cwt4MVjBLPAZAg9nZ6kSc9Cd40YhnyGFw+KePVrvPk3dhZBRR8UPN6roqqenwiuwLI+jNza+sbmVn67sLO7t39QPDzqqDiVlLVpLGLZ84ligkesDRwE6yWSkdAXrOtPruZ+945JxePoFqYJ80IyinjAKQEtuX1g9+AHWTo7HxRLllm5aFTqFrbMulOrNmqaNCpO1XGwbVoLlNAKrUHxvT+MaRqyCKggSrm2lYCXEQmcCjYr9FPFEkInZMRcTSMSMuVli5Nn+EwrQxzEUlcEeKF+n8hIqNQ09HVnSGCsfntz8S/PTSFoeBmPkhRYRJeLglRgiPH8fzzkklEQU00IlVzfiumYSEJBp1TQIXx9iv8nnYppW6Z9Uys1y6s48ugEnaIystElaqJr1EJtRFGMHtATejbAeDRejNdla85YzRyjHzDePgEJTZGr</latexit><latexit sha1_base64="RuJ/WOWmv0qWsx0aAsZGj4qvbr4=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiDmNMxk0cwt4MVjBLPAZAg9nZ6kSc9Cd40YhnyGFw+KePVrvPk3dhZBRR8UPN6roqqenwiuwLI+jNza+sbmVn67sLO7t39QPDzqqDiVlLVpLGLZ84ligkesDRwE6yWSkdAXrOtPruZ+945JxePoFqYJ80IyinjAKQEtuX1g9+AHWTo7HxRLllm5aFTqFrbMulOrNmqaNCpO1XGwbVoLlNAKrUHxvT+MaRqyCKggSrm2lYCXEQmcCjYr9FPFEkInZMRcTSMSMuVli5Nn+EwrQxzEUlcEeKF+n8hIqNQ09HVnSGCsfntz8S/PTSFoeBmPkhRYRJeLglRgiPH8fzzkklEQU00IlVzfiumYSEJBp1TQIXx9iv8nnYppW6Z9Uys1y6s48ugEnaIystElaqJr1EJtRFGMHtATejbAeDRejNdla85YzRyjHzDePgEJTZGr</latexit>

e�
k

<latexit sha1_base64="Iztn6Umi7rLG5lNF0JpW0x6J+s0=">AAAB9HicbVBNS8NAEN34WetX1aOXxSL2VBIR9Fjw4rGC/YA2lM120i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxuZ35rDNqIWD3gJAE/YgMlQsEZWsnvIjxhEGYwveiNeqWyW3XnoKvEy0mZ5Kj3Sl/dfszTCBRyyYzpeG6CfsY0Ci5hWuymBhLGR2wAHUsVi8D42fzoKT23Sp+GsbalkM7V3xMZi4yZRIHtjBgOzbI3E//zOimGN34mVJIiKL5YFKaSYkxnCdC+0MBRTixhXAt7K+VDphlHm1PRhuAtv7xKmpdVz61691flWiWPo0BOyRmpEI9ckxq5I3XSIJw8kmfySt6csfPivDsfi9Y1J585IX/gfP4A6+WSGQ==</latexit><latexit sha1_base64="Iztn6Umi7rLG5lNF0JpW0x6J+s0=">AAAB9HicbVBNS8NAEN34WetX1aOXxSL2VBIR9Fjw4rGC/YA2lM120i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxuZ35rDNqIWD3gJAE/YgMlQsEZWsnvIjxhEGYwveiNeqWyW3XnoKvEy0mZ5Kj3Sl/dfszTCBRyyYzpeG6CfsY0Ci5hWuymBhLGR2wAHUsVi8D42fzoKT23Sp+GsbalkM7V3xMZi4yZRIHtjBgOzbI3E//zOimGN34mVJIiKL5YFKaSYkxnCdC+0MBRTixhXAt7K+VDphlHm1PRhuAtv7xKmpdVz61691flWiWPo0BOyRmpEI9ckxq5I3XSIJw8kmfySt6csfPivDsfi9Y1J585IX/gfP4A6+WSGQ==</latexit><latexit sha1_base64="Iztn6Umi7rLG5lNF0JpW0x6J+s0=">AAAB9HicbVBNS8NAEN34WetX1aOXxSL2VBIR9Fjw4rGC/YA2lM120i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxuZ35rDNqIWD3gJAE/YgMlQsEZWsnvIjxhEGYwveiNeqWyW3XnoKvEy0mZ5Kj3Sl/dfszTCBRyyYzpeG6CfsY0Ci5hWuymBhLGR2wAHUsVi8D42fzoKT23Sp+GsbalkM7V3xMZi4yZRIHtjBgOzbI3E//zOimGN34mVJIiKL5YFKaSYkxnCdC+0MBRTixhXAt7K+VDphlHm1PRhuAtv7xKmpdVz61691flWiWPo0BOyRmpEI9ckxq5I3XSIJw8kmfySt6csfPivDsfi9Y1J585IX/gfP4A6+WSGQ==</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="ywz7v1q7Yrl4nBX/+QcnkaM0kGo=">AAAB6XicbZBLSwMxFIXv+Kz1Vd26CRbRVZlxo0vBjcsK9gHtUDLpnRqayYzJnWIZ+jvcuFDEP+TOf2P6WGjrgcDHOQn35kSZkpZ8/9tbW9/Y3Nou7ZR39/YPDitHe02b5kZgQ6QqNe2IW1RSY4MkKWxnBnkSKWxFw9tp3hqhsTLVDzTOMEz4QMtYCk7OCruEzxTFBU7Oe8NeperX/JnYKgQLqMJC9V7lq9tPRZ6gJqG4tZ3AzygsuCEpFE7K3dxixsWQD7DjUPMEbVjMlp6wM+f0WZwadzSxmfv7RcETa8dJ5G4mnB7tcjY1/8s6OcXXYSF1lhNqMR8U54pRyqYNsL40KEiNHXBhpNuViUduuCDXU9mVECx/eRWal7XArwX3PpTgBE7hAgK4ghu4gzo0QMATvMAbvHsj79X7mNe15i16O4Y/8j5/AKfckNQ=</latexit><latexit sha1_base64="ywz7v1q7Yrl4nBX/+QcnkaM0kGo=">AAAB6XicbZBLSwMxFIXv+Kz1Vd26CRbRVZlxo0vBjcsK9gHtUDLpnRqayYzJnWIZ+jvcuFDEP+TOf2P6WGjrgcDHOQn35kSZkpZ8/9tbW9/Y3Nou7ZR39/YPDitHe02b5kZgQ6QqNe2IW1RSY4MkKWxnBnkSKWxFw9tp3hqhsTLVDzTOMEz4QMtYCk7OCruEzxTFBU7Oe8NeperX/JnYKgQLqMJC9V7lq9tPRZ6gJqG4tZ3AzygsuCEpFE7K3dxixsWQD7DjUPMEbVjMlp6wM+f0WZwadzSxmfv7RcETa8dJ5G4mnB7tcjY1/8s6OcXXYSF1lhNqMR8U54pRyqYNsL40KEiNHXBhpNuViUduuCDXU9mVECx/eRWal7XArwX3PpTgBE7hAgK4ghu4gzo0QMATvMAbvHsj79X7mNe15i16O4Y/8j5/AKfckNQ=</latexit><latexit sha1_base64="Wxt2EGaSkqmyg6rX9KQvpR9rldE=">AAAB9HicbVA9TwJBEN3DL8Qv1NJmIzFSkTsbLUlsLDGRjwQuZG+Zgw17e+fuHJFc+B02Fhpj64+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TJxqDk0ey1h3AmZACgVNFCihk2hgUSChHYxv5357AtqIWD3gNAE/YkMlQsEZWsnvITxhEGYwu+yP++WKW3MXoOvEy0mF5Gj0y1+9QczTCBRyyYzpem6CfsY0Ci5hVuqlBhLGx2wIXUsVi8D42eLoGb2wyoCGsbalkC7U3xMZi4yZRoHtjBiOzKo3F//zuimGN34mVJIiKL5cFKaSYkznCdCB0MBRTi1hXAt7K+UjphlHm1PJhuCtvrxOWlc1z615926lXs3jKJIzck6qxCPXpE7uSIM0CSeP5Jm8kjdn4rw4787HsrXg5DOn5A+czx/qpZIV</latexit><latexit sha1_base64="Iztn6Umi7rLG5lNF0JpW0x6J+s0=">AAAB9HicbVBNS8NAEN34WetX1aOXxSL2VBIR9Fjw4rGC/YA2lM120i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxuZ35rDNqIWD3gJAE/YgMlQsEZWsnvIjxhEGYwveiNeqWyW3XnoKvEy0mZ5Kj3Sl/dfszTCBRyyYzpeG6CfsY0Ci5hWuymBhLGR2wAHUsVi8D42fzoKT23Sp+GsbalkM7V3xMZi4yZRIHtjBgOzbI3E//zOimGN34mVJIiKL5YFKaSYkxnCdC+0MBRTixhXAt7K+VDphlHm1PRhuAtv7xKmpdVz61691flWiWPo0BOyRmpEI9ckxq5I3XSIJw8kmfySt6csfPivDsfi9Y1J585IX/gfP4A6+WSGQ==</latexit><latexit sha1_base64="Iztn6Umi7rLG5lNF0JpW0x6J+s0=">AAAB9HicbVBNS8NAEN34WetX1aOXxSL2VBIR9Fjw4rGC/YA2lM120i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxuZ35rDNqIWD3gJAE/YgMlQsEZWsnvIjxhEGYwveiNeqWyW3XnoKvEy0mZ5Kj3Sl/dfszTCBRyyYzpeG6CfsY0Ci5hWuymBhLGR2wAHUsVi8D42fzoKT23Sp+GsbalkM7V3xMZi4yZRIHtjBgOzbI3E//zOimGN34mVJIiKL5YFKaSYkxnCdC+0MBRTixhXAt7K+VDphlHm1PRhuAtv7xKmpdVz61691flWiWPo0BOyRmpEI9ckxq5I3XSIJw8kmfySt6csfPivDsfi9Y1J585IX/gfP4A6+WSGQ==</latexit><latexit sha1_base64="Iztn6Umi7rLG5lNF0JpW0x6J+s0=">AAAB9HicbVBNS8NAEN34WetX1aOXxSL2VBIR9Fjw4rGC/YA2lM120i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxuZ35rDNqIWD3gJAE/YgMlQsEZWsnvIjxhEGYwveiNeqWyW3XnoKvEy0mZ5Kj3Sl/dfszTCBRyyYzpeG6CfsY0Ci5hWuymBhLGR2wAHUsVi8D42fzoKT23Sp+GsbalkM7V3xMZi4yZRIHtjBgOzbI3E//zOimGN34mVJIiKL5YFKaSYkxnCdC+0MBRTixhXAt7K+VDphlHm1PRhuAtv7xKmpdVz61691flWiWPo0BOyRmpEI9ckxq5I3XSIJw8kmfySt6csfPivDsfi9Y1J585IX/gfP4A6+WSGQ==</latexit><latexit sha1_base64="Iztn6Umi7rLG5lNF0JpW0x6J+s0=">AAAB9HicbVBNS8NAEN34WetX1aOXxSL2VBIR9Fjw4rGC/YA2lM120i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxuZ35rDNqIWD3gJAE/YgMlQsEZWsnvIjxhEGYwveiNeqWyW3XnoKvEy0mZ5Kj3Sl/dfszTCBRyyYzpeG6CfsY0Ci5hWuymBhLGR2wAHUsVi8D42fzoKT23Sp+GsbalkM7V3xMZi4yZRIHtjBgOzbI3E//zOimGN34mVJIiKL5YFKaSYkxnCdC+0MBRTixhXAt7K+VDphlHm1PRhuAtv7xKmpdVz61691flWiWPo0BOyRmpEI9ckxq5I3XSIJw8kmfySt6csfPivDsfi9Y1J585IX/gfP4A6+WSGQ==</latexit><latexit sha1_base64="Iztn6Umi7rLG5lNF0JpW0x6J+s0=">AAAB9HicbVBNS8NAEN34WetX1aOXxSL2VBIR9Fjw4rGC/YA2lM120i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxuZ35rDNqIWD3gJAE/YgMlQsEZWsnvIjxhEGYwveiNeqWyW3XnoKvEy0mZ5Kj3Sl/dfszTCBRyyYzpeG6CfsY0Ci5hWuymBhLGR2wAHUsVi8D42fzoKT23Sp+GsbalkM7V3xMZi4yZRIHtjBgOzbI3E//zOimGN34mVJIiKL5YFKaSYkxnCdC+0MBRTixhXAt7K+VDphlHm1PRhuAtv7xKmpdVz61691flWiWPo0BOyRmpEI9ckxq5I3XSIJw8kmfySt6csfPivDsfi9Y1J585IX/gfP4A6+WSGQ==</latexit><latexit sha1_base64="Iztn6Umi7rLG5lNF0JpW0x6J+s0=">AAAB9HicbVBNS8NAEN34WetX1aOXxSL2VBIR9Fjw4rGC/YA2lM120i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxuZ35rDNqIWD3gJAE/YgMlQsEZWsnvIjxhEGYwveiNeqWyW3XnoKvEy0mZ5Kj3Sl/dfszTCBRyyYzpeG6CfsY0Ci5hWuymBhLGR2wAHUsVi8D42fzoKT23Sp+GsbalkM7V3xMZi4yZRIHtjBgOzbI3E//zOimGN34mVJIiKL5YFKaSYkxnCdC+0MBRTixhXAt7K+VDphlHm1PRhuAtv7xKmpdVz61691flWiWPo0BOyRmpEI9ckxq5I3XSIJw8kmfySt6csfPivDsfi9Y1J585IX/gfP4A6+WSGQ==</latexit>v�
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(c) Global update

Figure 3: Updates in a GN block. Blue indicates the element that is being updated, and black
indicates other elements which are involved in the update (note that the pre-update value of the
blue element is also used in the update). See Equation 1 for details on the notation.

3. �v is applied to each node i, to compute an updated node attribute, v0
i. In our running

example, �v may compute something analogous to the updated position, velocity, and kinetic
energy of each ball. The set of resulting per-node outputs is, V 0 = {v0

i}i=1:Nv .
4. ⇢e!u is applied to E0, and aggregates all edge updates, into ē0, which will then be used in the

next step’s global update. In our running example, ⇢e!u may compute the summed forces
(which should be zero, in this case, due to Newton’s third law) and the springs’ potential
energies.

5. ⇢v!u is applied to V 0, and aggregates all node updates, into v̄0, which will then be used in
the next step’s global update. In our running example, ⇢v!u might compute the total kinetic
energy of the system.

6. �u is applied once per graph, and computes an update for the global attribute, u0. In our
running example, �u might compute something analogous to the net forces and total energy
of the physical system.

Note, though we assume this sequence of steps here, the order is not strictly enforced: it is possible
to reverse the update functions to proceed from global, to per-node, to per-edge updates, for example.
Kearnes et al. (2016) computes edge updates from nodes in a similar manner.

3.2.4 Relational inductive biases in graph networks

Our GN framework imposes several strong relational inductive biases when used as components in
a learning process. First, graphs can express arbitrary relationships among entities, which means
the GN’s input determines how representations interact and are isolated, rather than those choices
being determined by the fixed architecture. For example, the assumption that two entities have a
relationship—and thus should interact—is expressed by an edge between the entities’ corresponding
nodes. Similarly, the absence of an edge expresses the assumption that the nodes have no relationship
and should not influence each other directly.

Second, graphs represent entities and their relations as sets, which are invariant to permutations.
This means GNs are invariant to the order of these elements6, which is often desirable. For example,
the objects in a scene do not have a natural ordering (see Sec. 2.2).

Third, a GN’s per-edge and per-node functions are reused across all edges and nodes, respectively.
This means GNs automatically support a form of combinatorial generalization (see Section 5.1):
because graphs are composed of edges, nodes, and global features, a single GN can operate on
graphs of di↵erent sizes (numbers of edges and nodes) and shapes (edge connectivity).

6Note, an ordering can be imposed by encoding the indices in the node or edge attributes, or via the edges
themselves (e.g. by encoding a chain or partial ordering).
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And for LLPs?
• Application to semi-visible jets by 

Bernreuther, Finke, Kahlhoefer, Kraemer, 
Alexander Mueck (2006.08639)


• Succesfully trained graph-based 
network to distinguish semi-visible jets 
from QCD jets


• Use jet-constituents kinematics as 
inputs
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Figure 3: Comparison of the ROC curves in background rejection 1/✏B and signal e�ciency
✏S for semi-visible jet identification (left panel) and for boosted top jet identification (right
panel) as obtained by the CNN, LoLa and DGCNN architectures, respectively. The error
bands correspond to the spread obtained from five independent initialisations of the network.

bilities to belong to the background or the signal class, respectively. Defining a threshold
probability necessary for a jet to be labelled as signal and scanning over this threshold, one
obtains the receiver operating characteristic (ROC) curve, i.e. the inverse of the fraction of
background jets passing the threshold (the background rejection 1/✏B) as a function of the
fraction of signal events passing the threshold (the signal e�ciency ✏S). Figure 3 shows the
ROC curve for semi-visible jet identification (left panel) and for top-jet identification (right
panel). To estimate the stability and reproducibility of the network performances, five net-
works with independent random weight initialisations are trained on the same training data
and tested on the same testing data. The small spread in performance indicated by the shaded
band around the ROC curves in figure 3 shows that the training convergence of the networks
is stable. For a comparison of the top-tagging performance of our networks with the results
of ref. [35], see figure 10 in appendix B.

Various network performance measures are collected in table 1. We display the accuracy,
i.e. the ratio of the number of correctly classified jets over the total number of jets, the area
under the ROC curve, AUC =

R
d✏B ✏S(✏B), and the background rejection at a signal e�ciency

of 30%. Error estimates correspond to the spread obtained from the five independent network
trainings mentioned above.

The results presented in figure 3 and table 1 first of all confirm that the classification of
semi-visible jets is more challenging than that of top jets. Comparing the CNN, LoLa and
DGCNN architectures, we find that the DGCNN performs best for both top and semi-visible
jet identification. While the di↵erence between the CNN, the LoLa network and the DGCNN
is moderate for top identification, the strength of the DGCNN is particularly significant for
the classification of semi-visible jets. As shown in figure 3, the background rejection at a given
signal e�ciency, which is most relevant for an experimental analysis, is significantly improved
by a DGCNN for a wide range of signal e�ciencies. Specifically, at a signal e�ciency of 30%,
the background rejection of the DGCNN is almost a factor of five stronger than that of the
CNN.
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Figure 3. Schematic illustration of a dark shower from the decay of a Z
0 produced in association

with a gluon.

substantially larger than the estimate given in eq. (3.4). In the following, we will assume

that for �c⌧ < 1mm the rho meson decays can be treated as prompt, such that conventional

experimental strategies apply. However, since both the boost factor and the actual distance

travelled before the decay are subject to large fluctuations, displaced vertices may be

observable even for smaller decay lengths.

The average relative multiplicity of the di↵erent mesons depends on their respective

number of degrees of freedom. Spin-1 ⇢ mesons are three times as abundant as spin-0 ⇡

mesons and charged ⇢
± and ⇡

± mesons are twice as abundant as their neutral partners.

It follows that we expect on average 25% of a dark shower to consist of ⇢0 mesons, which

subsequently decay into SM hadrons, while the remaining 75% are stable mesons that

escape from the detector unseen. A dark shower will hence lead to a semi-visible jet [22, 23]

with an average fraction of invisible energy of rinv = 0.75.

Such semi-visible jets give rise to a range of interesting experimental signatures. If

the Z
0 is produced in isolation, i.e. without additional energetic SM particles from initial

state radiation (ISR), the two semi-visible jets will be back-to-back. Defining the minimum

angular separation in the azimuthal plane between the missing energy vector /ET and any

of the leading jets

�� = min
j

��(j, /ET ) , (4.4)

such events are expected to have small ��, as the missing energy is aligned with one of the

dark showers. Ordinary ”mono-jet“ searches (i.e. searches for energetic jets in association

with missing energy) will reject such events because of prohibitive QCD backgrounds from

misreconstructed jets [59, 60]. Traditional searches for di-jet resonances are also expected

to be insensitive to these kinds of events, since the visible jets only carry a fraction of the

energy of the dark shower and hence their invariant mass does not peak at the mass of the

Z
0.

However, given the relatively large value of rinv, there is a non-negligible probability

for a dark shower to remain entirely invisible. In this case, the Z
0 decay would lead to a

– 13 –

Dark shower form Z’ 
decay (1907.04346)
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Challenge: Background Estimation

-> See talk by Gordon right afterwards 
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Challenge: Uncertainties
• Need to assign uncertainty to classifier outputs / simulation data 

differences


• Once trained, a ML model is a deterministic function of its inputs

• Classical techniques of uncertainty quantification still work! 
• Propagation of input uncertainties or measurement in data  

• Additional ML aspects

• Include uncertainties in optimisation to maximise sensitivity  

(1806.00322, 1806.04743, 2110.00810)
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Challenge: Uncertainties
• Need to assign uncertainty to classifier outputs / simulation data 

differences


• Once trained, a ML model is a deterministic function of its inputs

• Classical techniques of uncertainty quantification still work! 
• Propagation of input uncertainties or measurement in data  

• Additional ML aspects

• Include uncertainties in optimisation to maximise sensitivity  

(1806.00322, 1806.04743, 2110.00810)

• Apply decorrelation to reduce effect of uncertainties / 

simulation difference (1611.01046,1703.03507,2001.05310,…)
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Challenge: Uncertainties
• Need to assign uncertainty to classifier outputs / simulation data 

differences


• Once trained, a ML model is a deterministic function of its inputs

• Classical techniques of uncertainty quantification still work! 
• Propagation of input uncertainties or measurement in data  

• Additional ML aspects

• Include uncertainties in optimisation to maximise sensitivity  

(1806.00322, 1806.04743, 2110.00810)

• Apply decorrelation to reduce effect of uncertainties / 

simulation difference (1611.01046,1703.03507,2001.05310,…)

• Use parametrised networks to improve  

treatment of nuisance parameters  
(2105.08742,2109.08159)
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Challenge: Uncertainties
• Need to assign uncertainty to classifier outputs / simulation data 

differences


• Once trained, a ML model is a deterministic function of its inputs

• Classical techniques of uncertainty quantification still work! 
• Propagation of input uncertainties or measurement in data  

• Additional ML aspects

• Include uncertainties in optimisation to maximise sensitivity  

(1806.00322, 1806.04743, 2110.00810)

• Apply decorrelation to reduce effect of uncertainties / 

simulation difference (1611.01046,1703.03507,2001.05310,…)

• Use parametrised networks to improve  

treatment of nuisance parameters  
(2105.08742,2109.08159)


• Build ML models that provide  
uncertainties along with predictions  
(e.g. Bayesian architectures, 1904.10004 2003.11099)
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Challenge: Diversity of Models
• Common issue of ML for searches:

• Different parameters of new physics model yield different signal properties  

(e.g. kinematics as function of resonance mass; dark shower properties as 
function of coupling strength) 

• Affects performance of ML-based selection 
(Also true for cut-based approaches but higher sensitivity of ML-taggers will 
mean this effect is larger) 

• Idea I - Pragmatic: 
• Do “nothing”, accept different sensitivity to different signal models

• Not wrong, but in general not optimal either

• Time-efficient
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Challenge: Diversity of Models
• Common issue of ML for searches:

• Different parameters of new physics model yield different signal properties  

(e.g. kinematics as function of resonance mass; dark shower properties as 
function of coupling strength) 

• Affects performance of ML-based selection 
(Also true for cut-based approaches but higher sensitivity of ML-taggers will 
mean this effect is larger) 

• Idea I - Pragmatic 
• Idea II - Extensive 
• Train separate ML classifier for each signal-parameter value

• Better classification performance expected

• Overhead of book-keeping and validation
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Challenge: Diversity of Models
• Common issue of ML for searches:

• Different parameters of new physics model yield different signal properties  

(e.g. kinematics as function of resonance mass; dark shower properties as 
function of coupling strength) 

• Affects performance of ML-based selection 
(Also true for cut-based approaches but higher sensitivity of ML-taggers will 
mean this effect is larger) 

• Idea I - Pragmatic 
• Idea II - Extensive 
• Idea III - Parametrisation (see 1601.07913) 
• Use signal-parameter as additional input 

in training; sample randomly for backgrounds; 

• Expect similar performance as II,  

but with one network

• Less bookkeeping, validation  

for different signal parameter values still needed

8

secondary vertices. Zero padding is used to accommodate the variable numbers of PF candi-
dates and secondary vertices.

Each charged PF candidate is described by the following features: the pT relative and perpen-
dicular to the jet axis, the Dh with respect to the jet axis, the track quality, and the transverse
and three-dimensional impact parameters (and their significances) of the track. Each neutral
PF candidate is described by its energy, the fractions of its energy deposited within the ECAL
and HCAL subdetectors, the compatibility with the photon hypothesis, the compatibility with
the pileup hypothesis as determined by the PUPPI algorithm [75, 76]. Charged and neutral
PF candidates are also described by the collinearity with respect to the jet axis and the near-
est secondary vertex. The features that describe each reconstructed secondary vertex include
the three-dimensional displacement (and significance) with respect to the primary pp colli-
sion vertex, the number of associated tracks, and the following quantities determined from the
four-momenta of the associated tracks: pT, the Dh with respect to the jet axis, and the invariant
mass. The global jet features comprise the jet momentum and pseudorapidity, the number of
constituent PF candidates, the number of reconstructed secondary vertices, and several high-
level engineered features used by the CSV b tagging algorithm [5].
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Figure 2: An overview of the DNN architecture, which comprises convolutional and dense lay-
ers; the numbers of filters and nodes are indicated. Dropout layers and activation functions
are not shown. The input features are grouped by object type and (m ⇥ n) indicates the max-
imum number of objects (m) and the number of features per object (n). The gradients of the
class (Lclass) and domain (Ldomain) losses with respect to the weights ~w, used during backward
propagation, are shown.

Four sequential layers of one-dimensional convolutions with a kernel size of one are used, with
each layer comprising 64, 32, 16, 8, or 4 filters depending on the group of input features. Per
particle candidate or vertex, each convolutional layer transforms the features from the pre-
ceding layer according to its filter size. By choosing a small filter size for the final layer, the
overall operation can be viewed as a compression. After each layer, a leaky rectified linear

Lifetime conditioning in 
1912.12238
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Challenge: Diversity of Models
• Common issue of ML for searches:

• Different parameters of new physics model yield different signal properties  

(e.g. kinematics as function of resonance mass; dark shower properties as 
function of coupling strength) 

• Affects performance of ML-based selection 
(Also true for cut-based approaches but higher sensitivity of ML-taggers will 
mean this effect is larger) 

• Idea I - Pragmatic 
• Idea II - Extensive 
• Idea III - Parametrisation 
• Idea IV - Anomaly searches 

Discuss next
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Anomaly Searches
• Motivation: Develop search-strategies that are less dependent on specific 

model assumptions

• Data analysis based on distributions over measured events

• Single outliers are statistically irrelevant, look for systematic over-densities

Can we use simulation to estimate backgrounds?
Yes No

• Systematically compare simulation and 
recorded data, look for differences


• Con: Relies on imperfect simulation

• Pro: Sensitive to all types of anomalies

• Estimate background from data

• Con: Need to make 

assumptions about signal model

• Pro: No reliance on simulation

MuSic search 
(2010.02984)
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –



Example: Anomaly-enhanced bump hunt  
(CATHODE)
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• Train density estimator (a class of powerful and 
flexible generative model) in sideband


• Interpolate to signal region

• Sample data there

• This produces ‘extrapolated-background’

2

m

a.u.

SB SR SB

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

x

pdata(x|m 2 SR)

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.

Train density estimator 
here

and sample here
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• Train classifier to distinguish data from extrapolated 
background in signal region


• If these can be distinguished: potential signal present


• Excellent performance and stability compared to 
other methods, close to supervised classifier

7

FIG. 6. Background rejection (left) and significance improvement (right) of the various anomaly classifiers as a function of
the signal e�ciency. The solid lines are deduced from a median value of 10 fully independent trainings on the same training,
validation and evaluation set. The uncertainty bands quantify the variance from retraining the NNs on the same, fixed dataset
and are defined such that they contain 68% of the runs around the median.

FIG. 7. Left: Median maximum significance improvement of each method with 10 di↵erent signal injections (leading to a
di↵erent split of training, validation and evaluation sets in each run) at each decreasing value of signal/background ratios.
Here, the 68% hatched uncertainty bands quantify the variance (around the median) from both retrainings of the NN and

random realizations of the training and validation data, including di↵erent realizations of the 1,000 injected signal events.
Right: Achieved maximum significance, which is computed by multiplying the uncut significance by the maximum significance
improvement. Both plots feature the significance without any cut applied in the upper horizontal axis. The dotted lines on the
right hand side denote 3 and 5 sigma significance values.

and the simulation-dependent methods. The fact
that Cathode is only marginally worse than the
idealized anomaly detector (in fact, they are over-
lapping within their respective error bands al-
most everywhere) is truly striking. The idealized
anomaly detector is meant to provide an upper
bound on the performance of any data vs. back-
ground anomaly detection method. The fact that
the Cathode method is nearly saturating it in-
dicates that Cathode is achieving close to opti-
mal performance on the LHCO R&D dataset. Evi-

dently, the background in the SR is being extremely
well modeled by the interpolated conditional den-
sity estimator.

• Finally, we see from Fig. 6 that while Cathode and
the idealized anomaly detector are outperformed
by the supervised classifier at higher signal e�cien-
cies, at lower signal e�ciencies their performances
are all increasingly comparable. The behavior at
high signal e�ciency may be explained by the fact
that there is simply too much background to find
the signal; meanwhile, at low signal e�ciency, the

Example: Anomaly-enhanced bump hunt  
(CATHODE)

Performance of  
Classifying Anomalies  
THrough Outer Density  
Estimation (CATHODE)

algorithm (2109.00546)



25

Anomaly Searches for LLP
• In general: Trade-off between coverage and sensitivity

• For overviews see 

LHC Olympics (2101.08320) and  
DarkMachines (2105.14027)  
community papers


• Open challenges:

• Difficult if signal is not a bump  

and backgrounds are hard to 
estimate


• Generalisation to higher number of  
observables and systematic 
understanding of sensitivity


Application of unsupervised 
anomaly detection to LLP search 

(2107.12379)

See Aris’ talk in this session



26

Final Aside: Trigger!
• Focused on strategies for offline analysis

• Additional challenge of recording potential LLP signal events

• Both model-specific LLP triggers (2004.10744, 2103.08620) 

as well as anomaly based strategies 
(1811.10276,2005.01598) considered


• Crucial Run 3 / HL-LHC development!

 
 

CERN Courier / Pierini (https://
cerncourier.com/a/hunting-

anomalies-with-an-ai-trigger/)

https://cerncourier.com/a/hunting-anomalies-with-an-ai-trigger/
https://cerncourier.com/a/hunting-anomalies-with-an-ai-trigger/
https://cerncourier.com/a/hunting-anomalies-with-an-ai-trigger/
https://cerncourier.com/a/hunting-anomalies-with-an-ai-trigger/


• Deep Learning for particle physics is rapidly 
developing solutions to a wide range of 
problems


• Long-lived analyses amplify existing 
challenges:


• Inexact simulation / background estimation


• Deluge of signal models


• Recording data


• The tools and ideas are there, but tailoring 
them to long-lived analyses will take work


• Trade-off coverage and sensitivity 


• Overview of ML in HEP papers:  
https://iml-wg.github.io/HEPML-LivingReview/
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Thank you!

https://worldscientific.com/
worldscibooks/10.1142/12294


Conclusions Our intro book:

https://iml-wg.github.io/HEPML-LivingReview/
https://worldscientific.com/worldscibooks/10.1142/12294
https://worldscientific.com/worldscibooks/10.1142/12294

