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pyhf Intro
public likelihoods & all that



Our job: extract as much information from experimental data as possible 

p(theory|data) = p(data|theory)
p(data)

p(theory)
<latexit sha1_base64="8pGQ8zVCJJKVDGsAQuOsMEq+zOQ=">AAACV3icbVHLTgIxFO0MiIgv0KWbRmICGzKDJroxIbpxiYk8EiCkUzrQ0OlM2jsmZJifNG74FTdaHkYFb9Lk9Jxz29tTLxJcg+MsLDuT3cvt5w8Kh0fHJ6fF0llbh7GirEVDEaquRzQTXLIWcBCsGylGAk+wjjd9XOqdV6Y0D+ULzCI2CMhYcp9TAoYaFmVU6QcEJipIYMJCNUvn3/sRAZJW8T3u+4rQ5Me4EuZbbdV021FNd86uDotlp+asCu8CdwPKaFPNYfGtPwppHDAJVBCte64TwSAhCjgVLC30Y80iQqdkzHoGShIwPUhWuaT4yjAj7IfKLAl4xf7uSEig9SzwjHM5p97WluR/Wi8G/26QcBnFwCRdX+THAkOIlyHjEVeMgpgZQKjiZlZMJ8SkCOYrCiYEd/vJu6Bdr7nXtfrzTbnxsIkjjy7QJaogF92iBnpCTdRCFL2jDytjZa2F9Wnn7PzaalubnnP0p+zSF1qPuC4=</latexit>
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The Likelihood

Evidence
PriorPosterior



Why focus on the likelihood? 
It's the best data product we have: all other results usually derive from it 

Unique as a high information-density product 
• almost every important decision 

is reflected in the likelihood 
(if it doesn't affect the likelihood, what are you doing?) 

Likelihoods are a good bottleneck through which all information flows 
• can recompute all important results without having to know details of analysis 
• based on this it's clear: this should be shared!

Big Picture Goals
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And we (ATLAS) now do share the likelihood
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It's all on HepData and citable
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Can reproduce results very quickly with a few lines of Python
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Quite a bit of excitement in the community
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Twitterati

Workshops

Jobs(!)

Papers



This talk

• Explain a bit statistical Models we do publish  
some details on HistFactory, pyhf, etc... 
 
Note: this is only what's possible now, lots of new develoments & ideas 
during public likelihoods workshop for Combine, unbinned analyses, etc.. 

• How they can be used 

• RECAST - partiularly interesting for LLP searches 
• statistical combination of multiple searches



Lightning Intro to HistFactory

HistFactory 
• simultaneous binned fits to multiple disjoint phase space regions ("channels") 
• provides standard building blocks for modelling simulation-based and 

data-driven systematics (e.g. ABCD type methods in LLP) 

Very wildly used in ATLAS, with additionally use in Bellle-II, LHCb, Pheno ...
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Lightning Intro to HistFactory

An Example from LLP community
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Lightning Intro to HistFactory

HistFactory 
• simultaneous binned fits to multiple disjoint phase space regions ("channels") 
• provides standard building blocks for systmatics 
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affecting yields

out main analysis 
(joint of multiple channels)

constraint terms 
for systematics



Lightning Intro to HistFactory

For a given HistFactory modeel you thus need to keep track of 
• observed yields in all bins of all channels 
• nominal expected yields (all bins, channels, samples) 
• systematic effects on expectation 
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Lightning Intro to HistFactory

For a given HistFactory modeel you thus need to keep track of 
• observed yields in all bins of all channels 
• nominal expected yields (all bins, channels, samples) 
• systematic effects on expectation 

We do this in a straight 
forward JSON Format 
 
This is what's on HepData

observed data

systematic effectsnominal expected 



Once you have a JSON, getting limits is easy
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pyhf has both asymptotic and toy-MC based inference APIs 
• for low-count LLP toys can become important 
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It's great to be able reproduce results, but doeesn't give us new science 
• Much more exciting: reuse! This is what public L'hoods & other tools are about. 

Two broad ways to reuse existing analyses: RECAST & Combination 

Beyond reproducing



17

RECAST: modifying one likelihood into a new likelihood ("patching") 
Combination: taking N likelihoods and building a new likelihood ("stitching") 

Beyond reproducing



RECAST reuses almost all of the statistical model 
• same data, same backgrounds, different new signals 

Three Step Procedure: 
1) compute new signal  2) make new L'hood  3) redo stat. analysis 

RECAST
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Signal Region Signal Region
CLs = 0.05... CLs = 0.34... 

New  Model recasting tool inference

public 
lhood

patch Result



For 1) use your favorite recasting tool that gives you est. yields in anlysis regions 
• Note (important also for LLP), you need yields for SR and CR regions! 

For 2) pyhf introduced the idea of a "JSON Patch" 
• a special format for the new yields you get from recasting tool 
• modifies existing likelihood to incorporate thew new model 
• like a code patch "remove original signal", "add new signal"

recasting = patch-generation machinery for public likelihoods
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new yields injected

jsonpatch likelihood.json patch.json > new.jsonOld Likelihood

Patch (from Step 1)

New Likeilhood



full collaboration-level RECAST important 
due to low-leve detector inputs & lots of ML 

Great Example of RECAST from ATLAS w/ CalRatio Analysis 

ssdfda

Example from LLP
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new physics reach



For combinations you need to ensure three things 
• phase-space regions must be disjoint and uniquely named 
• ensure consistency of nuisance parameter naming acrross input likelihoods 
• avoidance of double counting of external constraint terms 

Combinations
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For combinations you need to ensure three things 
• phase-space regions must be disjoint and uniquely named 
• ensure consistency of nuisance parameter naming acrross input likelihoods 
• avoidance of double counting of external constraint terms 

pyhf provides *some* tooling, but it's not as fully-featured 
• expect some manual JSON hacking for combination work 
• if people want to collaborate on JSON-combiner tooling let us know 

Combinations



all done with exactly the same JSONs as they are released

Example from ATLAS SUSY:



• publishing Likelihood is becoming a new normal 
• this enables new science through stat. combination & reinterpretation 
• particularly powerful for LLP searches 
• get in touch if you need help 

Summary

LLP community has been a constant companion in getting here. Thanks!

2017!


