Search for new light particles using MeV photon beam at the ILC

Hajime Fukuda (LBL/UC Berkeley)

in collaboration with:

Hidetoshi Otono (Kyushu U.) Satoshi Shirai (Kavli IPMU)

Positron source at the ILC

- It is a challenge to generate enough e^+ at the ILC
- Two methods are proposed to create e^+e^- pair:
 - Use a 3 GeV e^- beam created at an independent LINAC
 - Use a γ beam created from the 125 GeV e^- beam at a undulator

Let's focus on this design

Positron from the 125 GeV electron

- An oscillating magnetic field is imposed at the undulator and a photon beam is created
- The photon beam then create e+e- pair at a target

Photon beam

• As a biproduct, an energetic and intense photon beam is

obtained

• Energy: $\mathcal{O}(1-10)$ MeV

• Intensity: $\mathcal{O}(10^{16}) \, \gamma/\mathrm{sec}$ more intense than any other MeV γ source up to the present

→Our motivation

Can we do anything with this photon beam?

From Morikawa-san's slide at POSIPOL-2018

Search for new light particles

A new light particle X may mix with the photon

Called the light-shining-through-the-wall (LSW) experiment

Light particle models

- QCD axion
- Dark photon

Today, we focus on the QCD axion

QCD Axion

- A hypothetical particle to solve the strong CP problem
- Lagrangian

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{N_{DW} \alpha_{S}}{8\pi f_{a}} a G_{\mu\nu}^{a} \tilde{G}^{a\mu\nu} - \frac{c\alpha}{4\pi f_{a}} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

- Very light
 - $m_a \simeq 10^{-2} \left(\frac{10^9 \text{ GeV}}{f_a}\right) \text{ eV}$
- Mix with photon in the presence of a magnetic field
 - $aF_{\mu\nu}\tilde{F}^{\mu\nu} \to B_0(a \partial A)$

Experimental setup

Magnetic fields are imposed on the entire path

• We assume the path is of the similar length as the ILC itself

The photon beam is very collimated; the experimental facility may be not under but on the ground.

Advantage to use energetic photons

Conversion probability

$$P(\gamma \rightarrow a) = g_{a\gamma\gamma}^2 \left| \int^L dz \ e^{iqz} \ B(z) \right|^2$$
 For the longer L to maximize P, where we need larger E!
$$q = E - \sqrt{E^2 - m_a^2} \simeq \frac{m_a}{2E} \sim (10 \text{ km})^{-1} \left(\frac{m_a}{10^{-2} \text{ eV}} \right) \left(\frac{m_b}{E} \right)$$

- To maximize P,
 - Longer *BL* is better
 - But then, a momentum $\sim L^{-1}$ is smaller...

L

Magnetic field configuration

- If we flip magnetic fields over shorter scale w, the "momentum" can be larger
 - But for too short w, the "momentum" is peaked too sharply and the sensitivity is limited

Result (1-year), conservative

L = 2 km

 The distance between γ source and dump in the current design

$$B = 1 T$$

Result (1-year)

$$L = 10 \text{ km}$$

 $B = 10 \text{ T}$

Summary

- It is proposed to generate MeV photon beam as the positron source at the ILC
- The high intensity and large energy are advantageous for light particle search by the LSW experiment
- For the QCD axion, this may constrain the KSVZ model, where no other ground experiments are expected to do.