Intro	e and μ magnetic moments	H versus μ H	He versus μ He	Plans

Precise atomic spectroscopy in search for unknown interactions

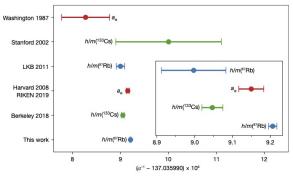
Krzysztof Pachucki & QED Theory Group

University of Warsaw

High Energy Physics Seminar Warsaw, May 28, 2021

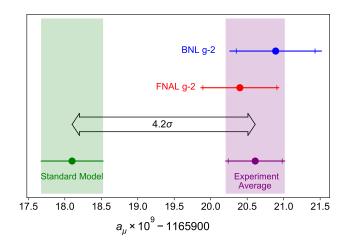
Intro •	e and μ magnetic moments	Η versus μ Η 00000	He versus μ He	Plans O
	omic spectroscopy wn interactions	in search		

- Measurements of atomic levels can be very accurate, Garching (2010)
 - $-\nu(1S-2S)_{\rm H} = 2466\,061\,413\,187\,035(10)$ Hz,
 - higher accuracy 10⁻¹⁸ has been reported for clock transitions
- Hydrogen ground state hfs $\delta E_{hfs}(H) = 1420405.751768(1) \text{ kHz}$,
 - hadronic contribution 33pm,
 - agreement with $\delta E_{\rm hfs}(\bar{H})$ up to $3 \cdot 10^{-9}$ ASACUSA (2017)
 - comparison to μH hfs ? (Antognini, PSI+ETH)
- Accurate calculations are possible only for simple systems like: H, He, Li, and exotic systems: \bar{p} He, $e\mu$,
 - the best m_e/m_p from HD+spectroscopy (Amsterdam, Düsseldorf, 2020)
- He, H₂: the most accurate μ_D , Q_D from HD spectroscopy


- collaborators from Praha: V. Patkos (He), from St. Petersburg: V.A. Yerokhin (He), and from UAM: J. Komasa (H₂, Be), M. Puchalski (H₂, He, Li, Be)

Intro ○	e and μ magnetic moments	Η versus μ Η 00000	He versus μ He	Plans O
electro	on magnetic moment			

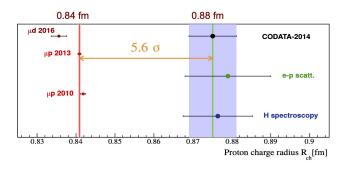
- $\delta H = -\vec{\mu} \vec{B}$, where $\vec{\mu} = g\left(\frac{e}{2m}\right) \vec{S}$ can be measured very precisely
- Dirac theory $\rightarrow g = 2$, the magnetic moment anomaly $a = \frac{(g-2)}{2} \sim \frac{\alpha}{2\pi}$ mainly due to QED effects, calculations up to α^5 order
- determination of the fine structure constant $\alpha = \frac{e^2}{4 \pi \epsilon_0 \hbar c}$ from the measurements of the electron g 2 versus the atomic recoil agreement
- 4.2 σ discrepancy for the muonic g 2, (FNAL, 2021)


 $\alpha^2 = \frac{2 R_{\infty}}{c} \frac{M}{m_e} \frac{h}{M} \rightarrow \text{measurement of } h/m \text{ leads to determination of } \alpha.$

from S. Guellati-Khelifa et al., Nature 588, 3 (2020),

Intro O	e and μ magnetic moments	Η versus μ Η 00000	He versus μ He	Plans O
μ magneti	c moment anomaly			

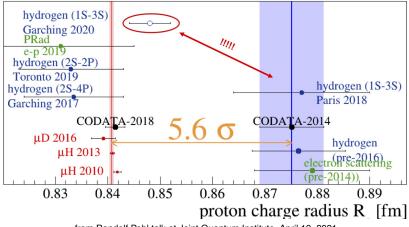
Phys. Rev. Lett. 126, 141801 (2021)


Intro O	e and μ magnetic moments	H versus μH ●0000	He versus μ He	Plans O
Hydrogen	and determination	of r _p		

- Measurements of transition frequencies can be very accurate, Garching 2010: $\nu(1S 2S)_{\rm H} = 2466\,061\,413\,187\,035(10)$ Hz
- but we need two transitions do determine two unknowns: R_{∞} and r_{ρ}
- other transitions measured in hydrogen: 2S 2P, 2S 3S, 2S 4P
- hydrogenic systems can be calculated very precisely
 - Dirac equation and finite nuclear mass effects
 - QED radiative corrections
 - nuclear polarizability: limits theory for μH

up to the finite nuclear size correction: $\delta E = \frac{2\pi}{3} (Z \alpha) \phi^2(0) \langle r_p^2 \rangle$

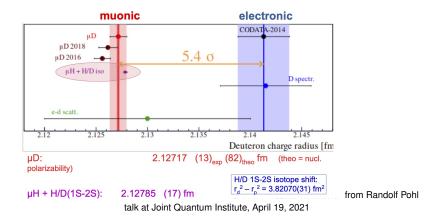
• high sensitivity to r_p in μ H due to \sim 200 heavier muon



20x more precise

from Randolf Pohl

talk at Joint Quantum Institute, April 19, 2021



from Randolf Pohl talk at Joint Quantum Institute, April 19, 2021

Intro O	$e \ {\rm and} \ \mu \ {\rm magnetic} \ {\rm moments}$ 000	H versus µH ○○○○●	He versus μ He	Plans O
μ D (2 <i>S</i>)	hyperfine splitting			

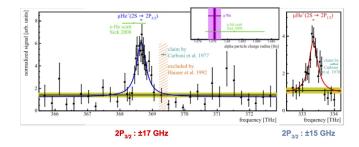
$$E_{\rm hfs}({\rm exp}) = 6.2747(70)_{\rm stat}(20)_{\rm syst} \ {\rm meV}$$

 $E_{\rm hfs}({\rm point}) = 6.17815(20) \ {\rm meV}$
 $\delta E_{\rm nucl} = E_{\rm hfs}({\rm exp}) - E_{\rm hfs}({\rm point}) = 0.0966(73) \ {\rm meV}$

 The Bohr-Weisskopf effect, charge and magnetic moment distribution within nucleus gives a correction with an opposite sign

 $\delta E_{\rm nucl,BW} = -0.1177(3) \text{ meV}$

Nuclear polarizability effects are very important


 $\delta E_{\text{nucl,theo}} = 0.0383(86) \text{ meV}$

in 5 σ disagreement with the experimental value

lack of good understanding of nuclear structure effects to hfs in muonic atoms

Intro	e and μ magnetic moments	H versus μH	He versus µHe	Plans
○		00000	●○○	O
u ⁴ Ho de	termination of a-par	ticlo chargo rac	liue	

R(⁴He) = 1.67824 (13)_{exp} (82)_{theo} fm

Krauth, RP et al. (CREMA Coll.) Nature 589, 527 (2021)

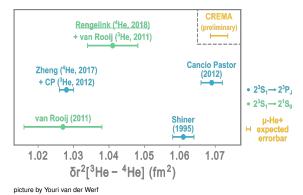
Theory: Diepold et al., Ann. Phys. (2018) incl. 3-photon nuclear polarizability (Pachucki, 2018)

Intro	e and μ magnetic moments	H versus µH	He versus μ He	Plans
⁴ He atom:	theory versus experir	nents		

Very recent measurement of 2^3S_1 ionization energy by F. Merkt *et al.* 2021, and very recent theory V. Patkos *et al.*, Phys. Rev. A 2021.

Table III. Comparison of experimental and theoretical values [12, 47] of the ionization energies of the 2 $^{3}S_{1}$, 2 ^{3}P (centroid), 3 $^{3}D_{1}$ and 3 $^{3}D_{2}$ states in ⁴He (in MHz) obtained by combining the 2 $^{1}S_{0}$ ionization energy with the transition frequencies from Refs. [13, 15, 16, 25, 30, 31].

	Experiment	Reference	Theory	Reference	$\Delta E_{I, expcalc.}$
$2^{3}S_{1}$	1152842742.637(32)	[13]	1152842742.231(52)	[12]	0.406(61)
$2^{3}P$	876 106 247.017(32)	[13, 15, 30, 31]	876 106 246.611(16)	[12]	0.406(36)
$3^{3}D_{1}$	366 018 892.635(65)	[13, 25]	366 018 892.691(23)	[47]	-0.056(69)
$3^{1}D_{2}$	365 917 748.688(34)	[16]	365 917 748.661(19)	[47]	0.027(38)


but a very good agreement with $2^3S_1 - 2^3P$ transition frequency with the charge radius from μ He Lamb shift

$$E(2^{3}S - 2^{3}P)_{\text{theo}} = 276\,736\,495.620\,(54)\,\text{MHz}$$

 $E(2^{3}S - 2^{3}P)_{exp} = 276736495.6000(14)$ MHz, Zheng *et al* 2017.

Intro ○	e and μ magnetic moments	H versus μH οοοοο	He versus μ He	Plans ●
Expected	d and planned measu	urements		

- μ ³He Lamb shift, PSI
- He⁺(1S 2S) Garching and Amsterdam
- μ H ground state hyperfine splitting, ETH

● µ⁺ e⁻ ETH

- μp scattering with high sensitivity to r_p , AMBER collaboration at CERN, Na66
- e p versus μp scattering, MUSE collaboration at PSI