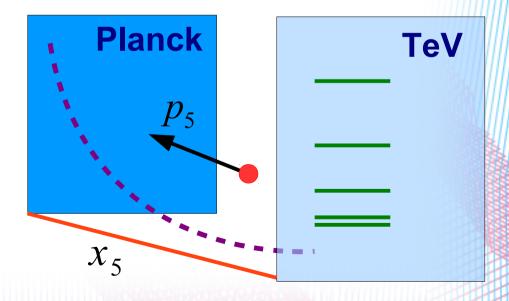
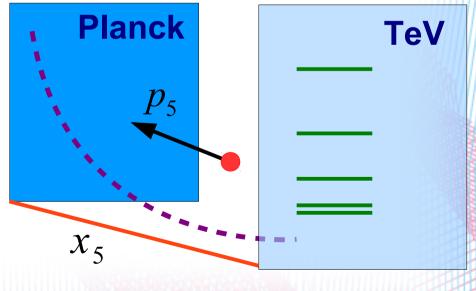
High p_T photon studies from Randall-Sundrum graviton simulations

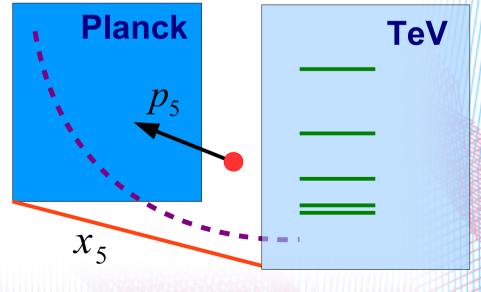
Student Sessions 18/08/10

Donal Hill

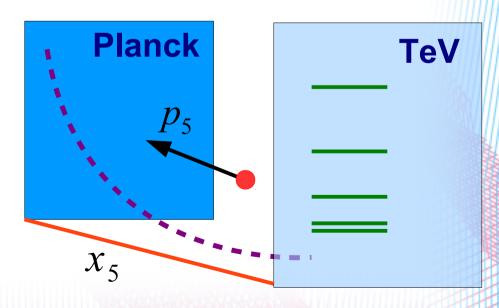

Queen's University Belfast CERN Summer Student – CMS Exotica photons Supervisor : Conor Henderson


Student Sessions 18/08/2010

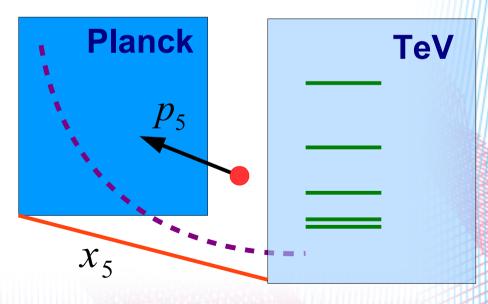
• One <u>warped</u> extra spatial dimension


• One <u>warped</u> extra spatial dimension

Solves the hierarchy problem $(M_{Pl} \gg TeV)$


- One <u>warped</u> extra spatial dimension
- **5-space**: massless gravitons with p_5

Solves the hierarchy problem $(M_{Pl} \gg TeV)$

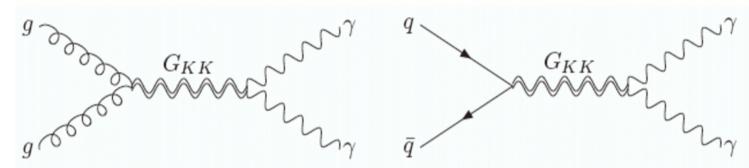

- One <u>warped</u> extra spatial dimension
- **5-space**: massless gravitons with p_5

- Solves the hierarchy problem $(M_{Pl} \gg TeV)$
- *4-space*: tower of <u>massive</u> KK excitations

- One <u>warped</u> extra spatial dimension
- **5-space**: <u>massless</u> gravitons with p_5
 - Two free parameters: M_G 1st KK graviton mass k/M_{Pl} Coupling constant

- Solves the hierarchy problem $(M_{Pl} \gg TeV)$
- *4-space*: tower of <u>massive</u> KK excitations

Student Sessions 18/08/2010


- One <u>warped</u> extra spatial dimension
- *5-space*: massless gravitons with p_5
 - Two free parameters:
 - $M_G \sim \text{TeV scale}$
 - k/M_{Pl} from 0.01 0.10

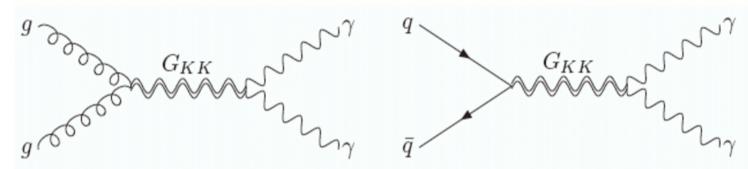
- Solves the hierarchy problem $(M_{Pl} \gg TeV)$
- *4-space*: tower of <u>massive</u> KK excitations

- Possible <u>resonance</u> at LHC energies
- $\blacktriangleright \text{ Probe } G \rightarrow \gamma \gamma \text{ channel}$

Student Sessions 18/08/2010

Diphoton decay of RS graviton

✓ Advantage - <u>larger BR</u> of 4% (2% for dilepton channel)


✓ Narrow width at resonance for $k/M_{Pl} < 0.1$

Student Sessions 18/08/2010

Donal Hill

3

Diphoton decay of RS graviton

- ✓ Advantage <u>larger BR</u> of 4% (2% for dilepton channel)
- ✓ Narrow width at resonance for $k/M_{Pl} < 0.1$
- Primary backgrounds from **SM** *YY* and **instrumental**:
 - quark annihilation (Born) & gluon fusion (Box)
 - QCD γ + jets , multijets and Drell-Yan

Student Sessions 18/08/2010

- We have both <u>real photons</u> and <u>fakes from jets</u>
- <u>Our task</u>: keep real photons (from RS decay) remove fakes (from $jets \rightarrow \pi_0 \rightarrow \gamma \gamma$)

- We have both <u>real photons</u> and <u>fakes from jets</u>
- <u>Our task</u>: keep real photons (from RS decay) remove fakes (from $jets \rightarrow \pi_0 \rightarrow \gamma \gamma$)
- How do we do it: by making Isolation cuts

- We have both <u>real photons</u> and <u>fakes from jets</u>
- <u>Our task</u>: keep real photons (from RS decay) remove fakes (from $jets \rightarrow \pi_0 \rightarrow \gamma \gamma$)
- How do we do it: by making Isolation cuts

Real photonsEM shower in ECAL onlyJet fakesActivity around candidate, HCAL deposits

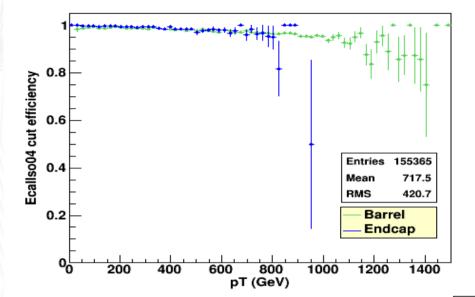
- We have both <u>real photons</u> and <u>fakes from jets</u>
- <u>Our task</u>: keep real photons (from RS decay) remove fakes (from $jets \rightarrow \pi_0 \rightarrow \gamma \gamma$)
- How do we do it: by making Isolation cuts
 - Real photonsEM shower in ECAL onlyJet fakesActivity around candidate, HCAL deposits

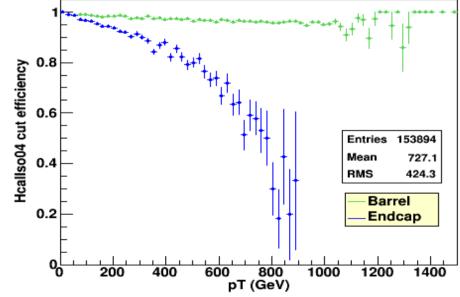
Look around candidate for extra energy and tracks

Student Sessions 18/08/2010

- Ecal Iso sum of ECAL E_{T} in region around candidate
- Hcal Iso
- Had/EM
- Track Iso
- Require No Pixel Seed
- Separate <u>barrel</u> and <u>endcap</u> p_T , η distributions

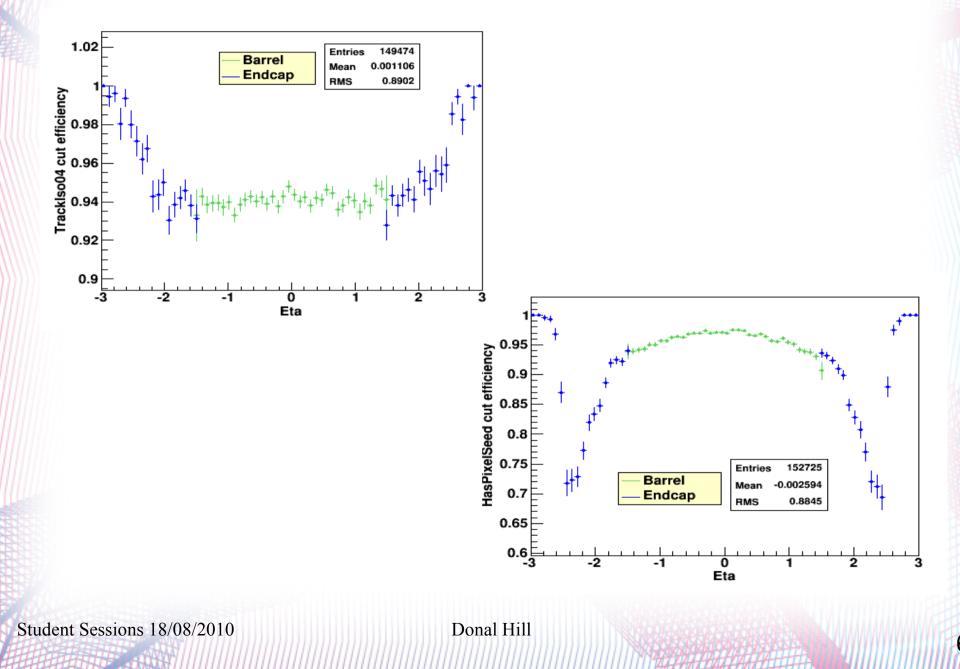
- Ecal Iso
- Hcal Iso sum of HCAL E_{T} in region around candidate
- Had/EM
- Track Iso
- Require No Pixel Seed
- Separate <u>barrel</u> and <u>endcap</u> p_T , η distributions

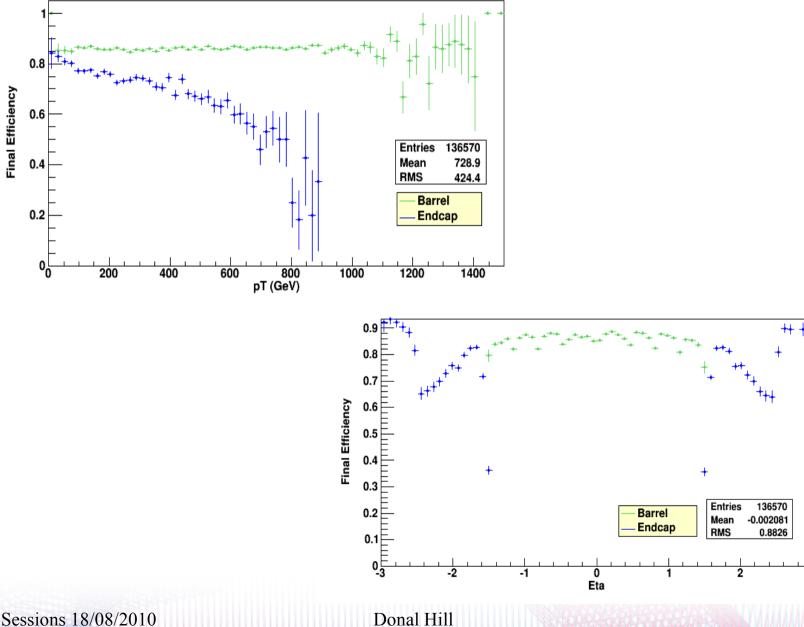

- Ecal Iso
- Hcal Iso
- Had/EM ratio of hadronic to EM energy
- Track Iso
- Require No Pixel Seed
- Separate <u>barrel</u> and <u>endcap</u> p_T , η distributions


- Ecal Iso
- Hcal Iso
- Had/EM rejects jets with large hadronic component
- Track Iso
- Require No Pixel Seed
- Separate <u>barrel</u> and <u>endcap</u> p_T , η distributions

- Ecal Iso
- Hcal Iso
- Had/EM
- Track Iso scalar sum of p_{T} in a cone around candidate
- Require No Pixel Seed
- Separate <u>barrel</u> and <u>endcap</u> p_T , η distributions

- Ecal Iso
- Hcal Iso
- Had/EM
- Track Iso
- Require No Pixel Seed differentiate e from γ in ECAL
- Separate <u>barrel</u> and <u>endcap</u> p_T , η distributions

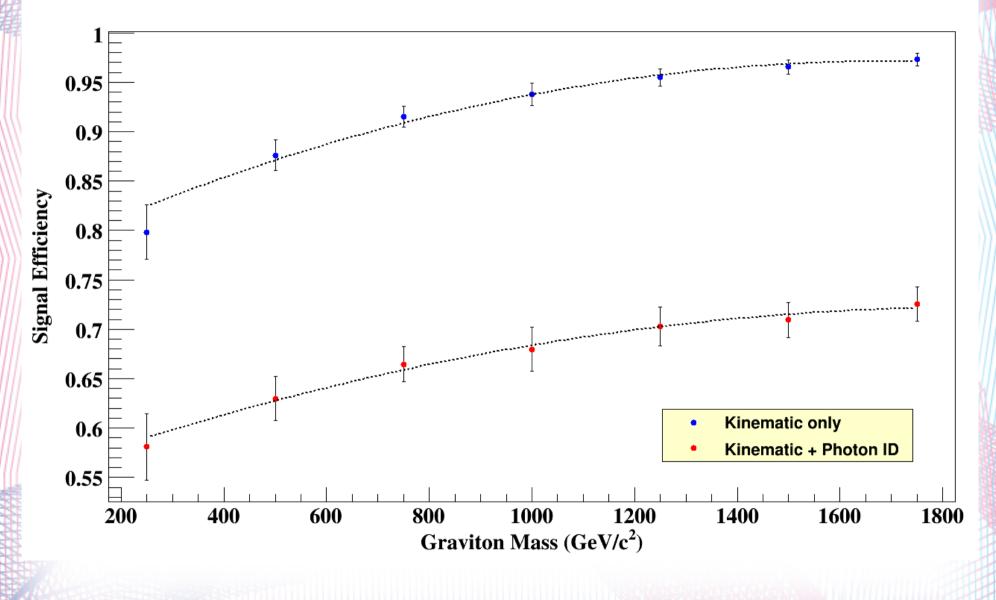

Efficiency v p_T examples


Student Sessions 18/08/2010

Efficiency v Eta examples

6

Final Efficiencies – dR + Photon ID cuts

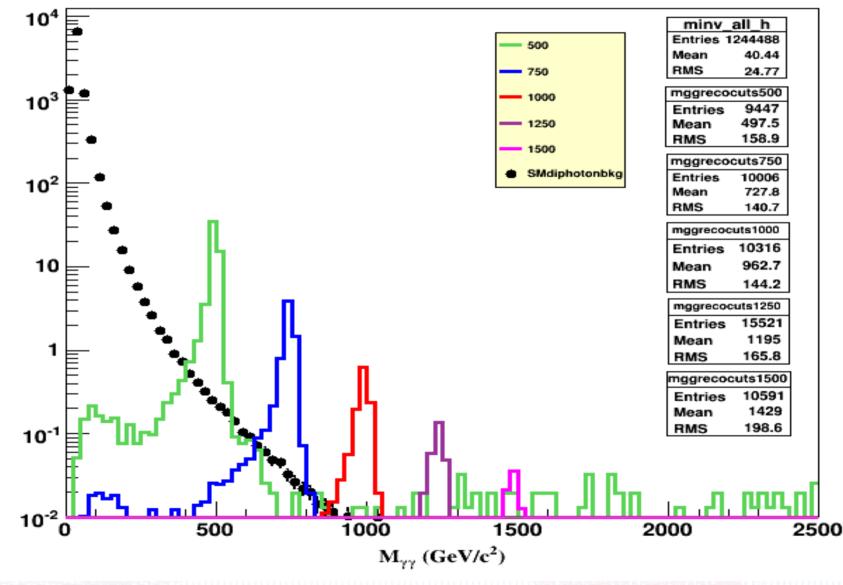


Student Sessions 18/08/2010

7

3

Total diphoton signal efficiency


Student Sessions 18/08/2010

Sensitivity studies

- Obtain a measure of expected sensitivity for:
- i) Fixed M_G with variable k/M_{Pl}
- ii) Fixed k/M_{Pl} with variable M_G

 Compare with SM diphoton background – include Born and Box contributions

$k / M_{Pl} = 0.05$

Student Sessions 18/08/2010

M_{G} (GeV/c²)

		250	500	750	1000	1250	1500	1750	2000
k/M_{Pl}	0.01	40.8	1.43	0.187	0.0348	0.00800	0.00210		
	0.05		41.9	4.89	0.871	0.108	0.0641	0.0208	
	0.10			19.4	3.70	0.425	0.256	0.0818	0.0154

Student Sessions 18/08/2010

Summary

- Photon ID cuts effective in high p_{T} regime
- High $G \rightarrow \gamma \gamma$ signal efficiencies across M_{G} range

- Sensitive across non-excluded M_G and k/M_{Pl} range – <u>low</u> mass, <u>high</u> coupling favoured
 - Extensive background estimation required