

CERN - a short and sweet introduction

14. Juni 2021

Conseil Européen pour la Recherche Nucléaire

International Collaboration
Education
Fundamental Research
New Technology

History

1949

First steps towards civilian research in the field of nuclear technology

1952
Foundation of CERN under the auspices of UNESCO in Geneva

1953
Signing of the CERN charta
1954
Completion of the ratification process of the 12 Member States

Member States of CERN
Member States (date of accession)

CERN Today

23 Member States
9 Associate Member States

Annual budget
1.2 billion CHF
1.1 billion EUR
1.3 billion USD

OPENACCESS

Let's have a coffee with the Standard Model of particle physics!
and Frederit ${ }^{\text {F }}$, Gerfried J Wiener ${ }^{1,3}$
Can der Veken
CERN, European Organization f
Department of Physysisimization for Nuclear Research, Geneva, Switerland
Austrian Educational Comsedectection Croup, Univerity

Abstract
The Standard Model
in physics and describes particle physics is one of the most successful theories
particless. It is encoded in a compantal interactions between el
which which even fits en onded ishirt a compact descritition, the soetween elementary
however, is compled 'Lagrangian however, is complex and only corfee mugs. This mathe matical forrangian
Therefore, to soupport high school makes it into into the physiches classroom
of introd of introducing particle physcisool teachers in their challenging phass endeavour
explanation of the based on associated Feynmman Lagrangian and discuss thevide a qualitatative
associated Feynman diagrams.

1. Introduction

The Standard Model of particle physiss is the most
important achievement of thental interactions in nature, all except grav-
dity
date. This are chergy described by the St
 describes hoow they to their respective chargens sary enced by the electromagnetictic interactigion are influlu describes how they interare sespective charges and electrodynamics, or oragnotic interaction (quantur
interactions. In this context, a chayg fundamental
a weak chart) particles witt men elementary particice that a dearge is a property action (cuarge are influenced by the weak inter witer hen say that the corresponch it is is influenced. We the strong intheraction charge are influenced by and 'couples' to a certainesponding interaction particle
the interacte For example The interaction particles of of the strexample, gluonco
couple to co col
(c) (1) Original cont particles. Of the four

Commons Autribut und conten the from this work moy be
 author(s) and the title of the the tork, jountrution citation tone and
DOI.

361-6552/17/034001+9833.00 QCD). Contracry (quantum chromodyedyamics the
the Brout-Eng the fundamentel the Brountrary to the fundamental innemamics or
special way Bert--iggss (BEH) field special way. Because itigs is a scalar field fiet, it in in a
spontaneous s.
 (this is commonly calles with which it interacts
In addition, the Higges particl Higgs mechanism). In addition, the Higgs sadticle Higgs mechanism).
other particle which has
couples to any
Interticle which has mass (includuples to any
Itive interaions are mediated itself).
tive interactions are mediated by theitiselfesf: photons (γ) for for

More than $\mathbf{2 0 , 0 0 0}$ scientists from around the world

2,600 Staff
800 Fellows 550 Students

15,000 Users
2,000 Externals

Fundamental questions of humankind

Oremacciss

Introducing the LHC in
of education resourcerview Gerfried $J w_{i e n}$ available
and Konrad Jende ${ }^{1,5}$, Julia Woithe ${ }^{1,3}$, Alexander Brown ${ }^{1,4}$

E-mail: gerfried.wienerecerericle Physics, TU Desesden, Germants Uny
E-mail: gerfiried wienererecrn.ch, julia. woithe@cern.ch, alexander.brown@cern.ch
and kontad.jende cern.ch
Abstract
In the context of the recent re-start of CERN's Large
and the challenge presented
facilitate challenge presented by by untrof CERN's Large Hadron Collider (LHC)
this paper provideduction of high energity phy farling objects (UFOS), we seek to
existing existing education resources, and line LhC LHC and its operation om. Therefore,
topics in topics in physics curricula.a. and linking principal comporation, highhlighting

Introduction

Early in 2015, CERN's Large Hadron Codust particles and can was
(LHC)
(LHC) was awoken from its first long shultider losses with a duration on the fast, localised beam
to er re-ramped for Run 2 at unpreceedented beam the beam. This is ation on the order of shown issued bean 10 turns of
energy and intensity to verify the fultensity. Intense scrutitiny wanter beam has been observed beforer issud of the Lhe LHC whic
tems. Thice between 201
 ensure a eell-scrubbed LHC [I] of Howe macer, due to to events below the more than 10000 candidate [2] The
he increased beamp threshold were sue reared beam curtents, a critical but fene to to [2]. Thus, UFOs presented more of were detected between the beams dund the run. Interactions than a danger to the LHented more of an annoyance

 mous UFOS arear dumps (see figureveral premature 1 . Thduced magnee tuenches the the likelihood of UFO
me me infa-
a possible hazard
(©) (1) Oini inal comenten trom this work may-sized icular care is is taken to the machine. Therefore, paratig

or, Journal ciation and DoI.
0031-9120/16/135001 +7833.00
The recent wre-start of the same in Run 2 R 2 ime, it
lisc an higher col

Q

2

Knowledge Transfer

Touchscreens
Medical applications

What's next?

Merci bien!

Questions?

cern.ch/jeff.wiener

