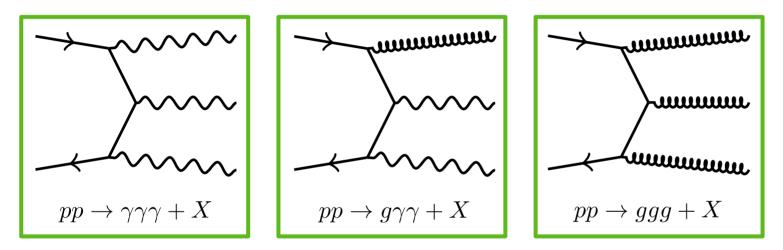
NNLO QCD predictions for 2 to 3 processes

Rene Poncelet In collaboration with Michal Czakon, Alexander Mitov and Herschel Chawdhry

Based on: 2106.05331, 2105.06940, 2103.04319, 2012.13553, 1911.00479 and 1907.12911

European Research Council


Established by the European Commission

18.6.2021 CERN QCD Lunch

Outline

\rightarrow NNLO QCD pheno for 2 to 3 processes

- \rightarrow Sector-improved residue subtraction
- \rightarrow 5-point amplitudes

18.6.2021 CERN QCD Lunch

Precision vs. Multiplicity @ the LHC

Why are we interested in NNLO QCD for $2 \rightarrow 3$ processes?

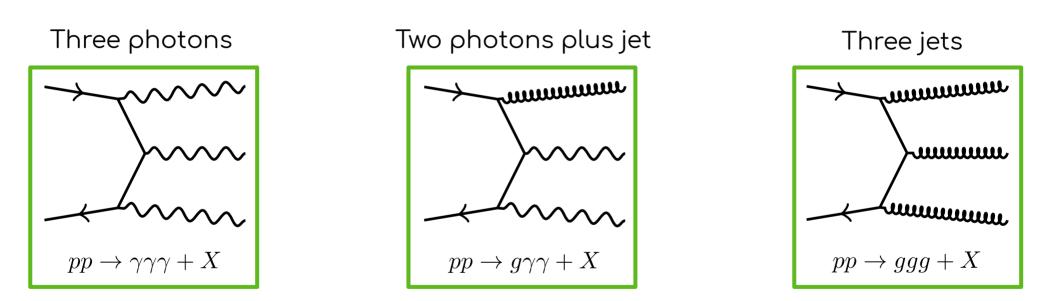
Phenomenological aspects:

- For 2 → 2 NNLO QCD (+NLO EW) huge success for many measurements! In some cases N3LO on the wish list.
- Next phase of LHC \rightarrow enough statistics to actually resolve 2 \rightarrow 3 NNLO?!
 - Massless processes a clear case!
 - But also heavy processes H/V+2j, ttH, ttV, VVV, ... call for NNLO predictions!

Theory aspects:

- Development of NNLO QCD technology (amplitudes & subtraction) crucial work on the road towards NNLO event simulation.
- Necessary ingredient for differential 2 \rightarrow 2 N3LO QCD

NNLO QCD prediction beyond $2 \rightarrow 2$

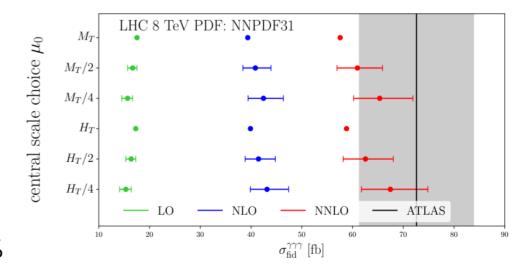

- $2 \rightarrow 3$ Two-loop amplitudes:
- (Non-) planar 5 point massless 'pheno ready' [Chawdry'19'20'21,Abreu'20'21,Agarwal'21,Badger'21] fast progress in the last half year → triggered by efficient MI representation [Chicherin'20]
- 5 point with one external mass [Abreu'20,Syrrakos'20,Canko'20,Badger'21]

Many leg, IR stable one-loop amplitudes \rightarrow OpenLoops [Buccioni'19]

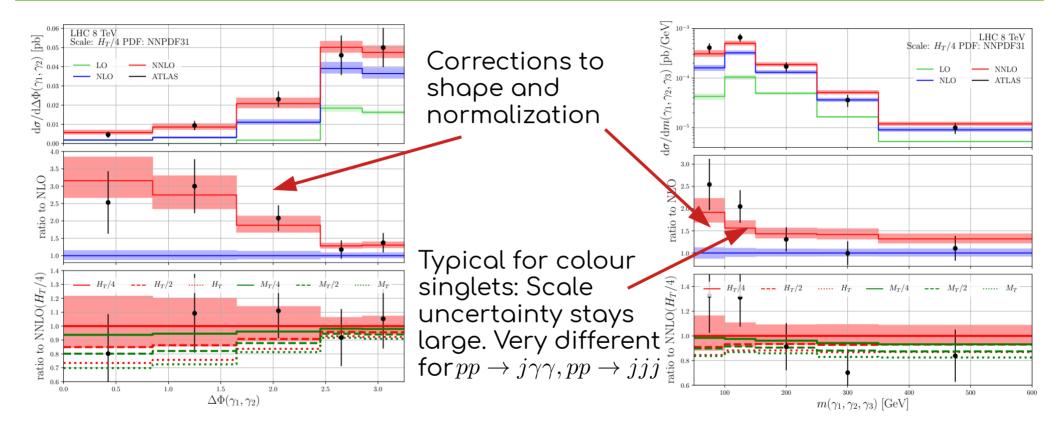
Cross sections \rightarrow Combination with real radiation

• Various NNLO subtraction schemes are available: qT-slicing [Catain'07], N-jettiness slicing [Gaunt'15/Boughezal'15], Antenna [Gehrmann'05-'08], Colorful [DelDuca'05-'15], Projetction [Cacciari'15], Geometric [Herzog'18], Unsubtraction [Aguilera-Verdugo'19], Nested collinear [Caola'17], Sector-improved residue subtraction [Czakon'10-'14]

Phenomenological applications

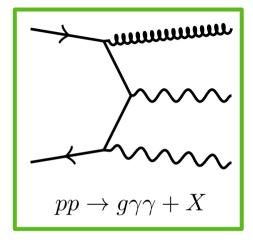


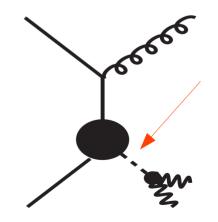
Three photon production



- First NNLO QCD 2 \rightarrow 3 cross sections: [Chawdhry'19],[Kallweit'20]
- Simplest among the 2 \rightarrow 3 massless cases: colour singlet
- Planar Two-loop virtuals: $2 \operatorname{Re}(\mathcal{M}^{(0)^{\dagger}}\mathcal{F}^{(2)})$ with 'original' pentagon functions [Henn'18] \rightarrow Fast helicity amplitudes: [Abreu'20],[Chawdhry'20]

- Large NNLO/NLO K-factors
- Similar behaviour as $\ pp \to \gamma\gamma$
- NNLO QCD corrections essential for theory/data comparison
- Contribution of 2-loop amps small $\approx 1\%$

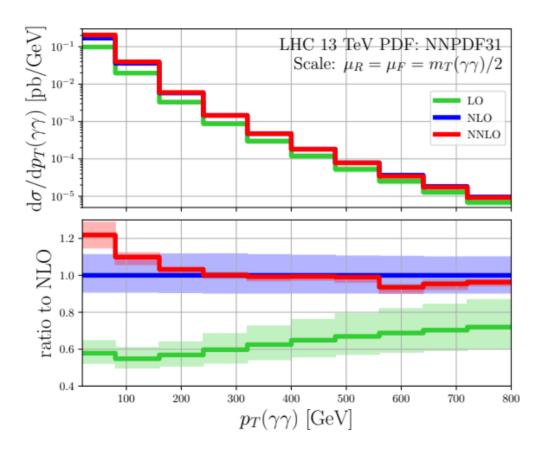



Three photon production

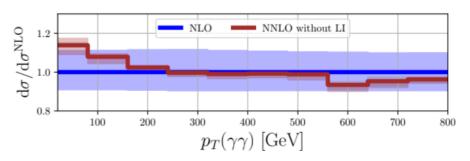
Diphoton plus jet production

- Photon pair production @ LHC is of particular interest:
 - Main background to cleanest Higgs decay channel
- Inclusive diphoton show large NNLO QCD corrections
 - Perturbative convergence @ N3LO?
 First steps: [Chen's talk at RADCOR+Loopfest2021]
 - → Diphoton plus jet @ NNLO QCD ($p_T(\gamma\gamma) \rightarrow 0$ limit)
- $p_T(\gamma\gamma)$ spectrum itself interesting for Higgs $\rightarrow \gamma\gamma$:
 - → Higgs p_T measurements resolve local Higgs couplings → BSM searches
 - -> Angular diphoton observables \rightarrow spin measurements

Diphoton plus jet - setup

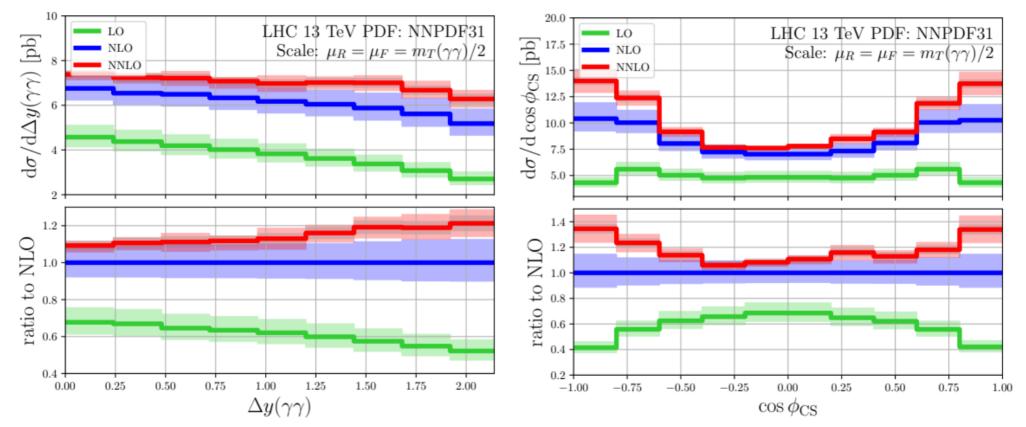

[Chawdry'21]: Inspired by Higgs $\rightarrow \gamma\gamma$ measurement phase spaces

- Smooth photon isolation criteria: $E_T = 10 \text{ GeV}, R_{\gamma} = 0.4, \Delta R(\gamma, \gamma) > 0.4$
- $p_T(\gamma_1) > 30 \text{ GeV}, p_T(\gamma_2) > 18 \text{ GeV and } |y(\gamma)| < 2.4$
- $m(\gamma\gamma) > 90$ GeV and $p_T(\gamma\gamma) > 20$ GeV, below resummation important
- No further restrictions on jets (IR safety from $p_T(\gamma\gamma)$ cut)


Technicalities:

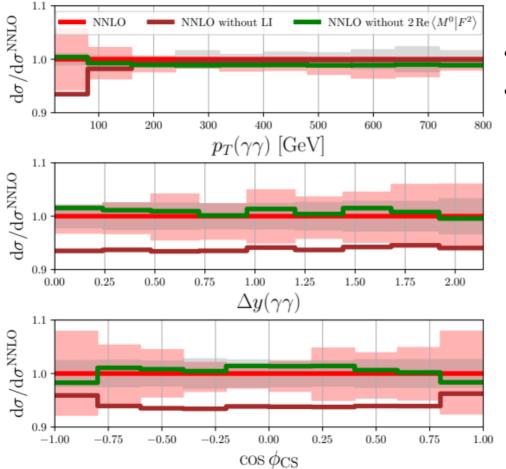
- LHC 13 TeV, PDF: NNPDF31, Scale: $\mu_R^2 = \mu_F^2 = \frac{1}{4}m_T^2(\gamma\gamma) = \frac{1}{4}(m(\gamma\gamma)^2 + p_T(\gamma\gamma)^2)$
- 5 massless flavours and top-quarks (in all one-loop amps)
- Approximation of two-loop amps: 2 Re(M^{(0)[†]} F⁽²⁾) + F^{(1)[†]} F⁽¹⁾ without top-quark loops and 2 Re(M^{(0)[†]} F⁽²⁾) in leading colour limit [Chawdhry'21] → Update to full colour planned [Agarwal'21]

Diphoton plus jet – pT spectrum



- Beautiful perturbative convergence
- Scale dependence: NLO: ~10% NNLO: ~1-2%
- Low p_T region:
 - ? Resummation for $p_T(\gamma\gamma)/m(\gamma\gamma) \ll 1$
 - Strong effect from the loop induced!

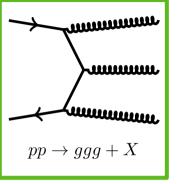
18.6.2021 CERN QCD Lunch


Diphoton plus jet – Angular observables

Note: Normalization affected by low p_T behaviour

18.6.2021 CERN QCD Lunch

Diphoton plus jet – two-loop contribution


- Two-loop contribution (green line) <~1%,
- Loop induced contribution:
 - → sizeable effects for low p_T , vanishes for high p_T
 - → flat effect in 'bulk' observables
 - Dominant source of scale dependence
 - → NLO QCD correction (formally N3LO) relevant, missing piece: $gg \rightarrow g\gamma\gamma$ two-loop [Badger'21]

Three jet production

- Multi-jet rates provide a unique possibility to test (perturbative) QCD
- Parameter extraction:
 - Measurements of α_s from event shapes and jet rate ratios \rightarrow energy scale dependence \rightarrow test of α_s running
 - PDF extraction \rightarrow high-x gluon
- Multi-jet signatures are background for many SM signatures.
- Allow to probe broad ranges of energy scales for heavy new physics
- Large cross sections → large statistics In practice only limited by systematics!

→ Theory uncertainties: missing higher orders, resummation, NP-physics, ...

18.6.2021 CERN QCD Lunch

Three jet production

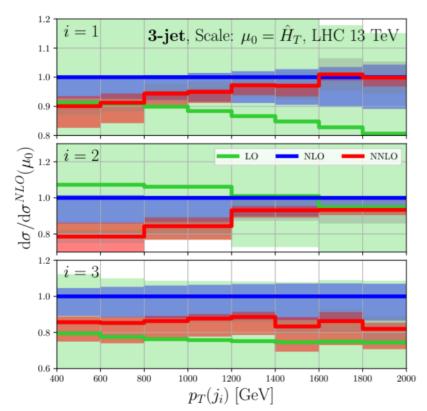
Advances in perturbative QCD allow precision predictions for multi-jet rates

NNLO QCD predictions for two and three jet rates

- NNLO QCD di-jet production known:
 - Gluons only [Gehrmann-De Ridder'13], partially leading colour [Currie'16]
 - Complete [Czakon'18] \rightarrow sub-leading colour effects < 1-2%
- NNLO QCD tri-jet production:
 - Bottleneck double virtual amplitudes: recently published in leading colour approximation [Abreu'21]
 - Handling of real radiation:
 - Sector-improved residue subtraction conceptually capable
 - Computationally very challenging!

Three jet production - Setup

Setup:

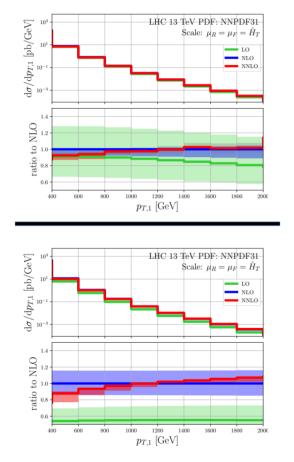

- LHC @ 13 TeV, NNPDF31
- Require at least three (two) jets with:
 - $p_T(j) > 60 \text{ GeV and } |y(j)| < 4.4$
 - $H_{T,2} = p_T(j_1) + p_T(j_2) > 250 \text{ GeV}$
- Scales: $\mu_R = \mu_F = \hat{H}_T = \sum_{\text{partons}} p_T$

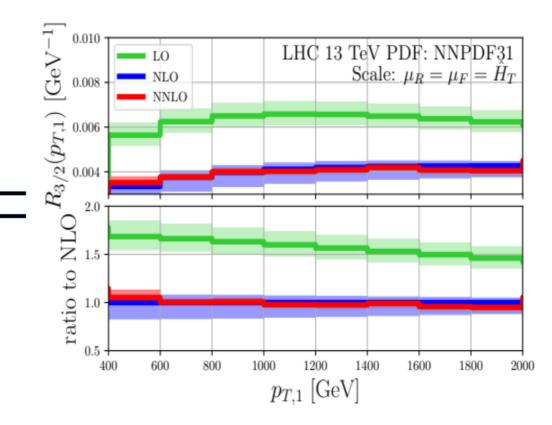
R32 ratios:

- $R_{3/2}(X,\mu_R,\mu_F) = \frac{\mathrm{d}\sigma_3(\mu_R,\mu_F)/\mathrm{d}X}{\mathrm{d}\sigma_2(\mu_R,\mu_F)/\mathrm{d}X}$
- Scale dependence is determined by correlated variation

Only Approximation made: $\mathcal{R}^{(2)}(\mu_R^2) = 2 \operatorname{Re} \left[\mathcal{M}^{\dagger(0)} \mathcal{F}^{(2)} \right] (\mu_R^2) + |\mathcal{F}^{(1)}|^2 (\mu_R^2) \equiv \mathcal{R}^{(2)}(s_{12}) + \sum_{i=1}^4 c_i \ln^i \left(\frac{\mu_R^2}{s_{12}} \right)$ \rightarrow taken from [Abreu'21] $\mathcal{R}^{(2)}(s_{12}) \approx \mathcal{R}^{(2)l.c.}(s_{12})$

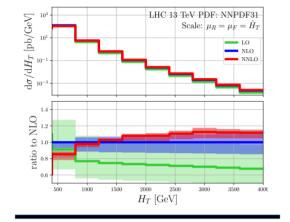
Three jet production – transverse jet momenta

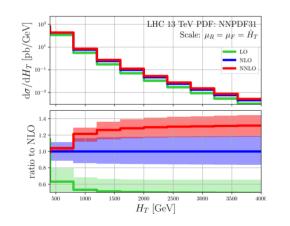


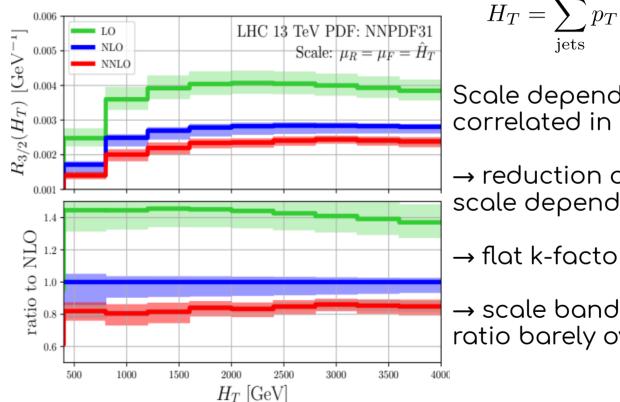

- $p_T(j_2)$:
 - → suffers from slow MC convergence, larger binning
 - \rightarrow shows reasonable perturbative convergence
- $p_T(j_3)$:
 - \rightarrow fast MC convergence
 - \rightarrow flat k-factor

Caveat:

- \rightarrow Scale choice based on full event
- \rightarrow reasonable for $p_T(j_1)$ and $p_T(j_2)$
- $\rightarrow p_T(j_3) \ll p_T(j_1) + p_T(j_2)$
 - \rightarrow potentially large hierarchy?
- \rightarrow investigation with 'jet-based' scale useful


Three jet production - R32(pT1)

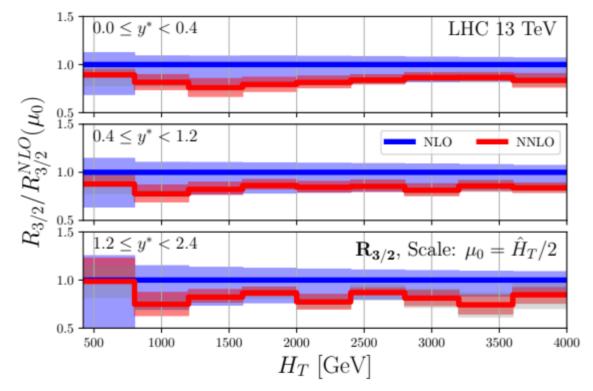




18.6.2021 CERN QCD Lunch

Three jet production - R32(HT)

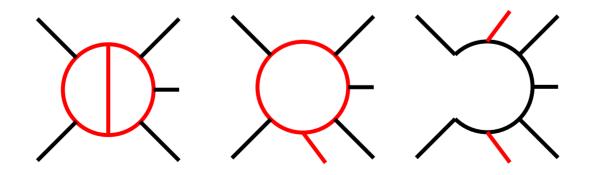
 \rightarrow reduction of scale dependence


 \rightarrow flat k-factor

 \rightarrow scale bands in ratio barely overlap

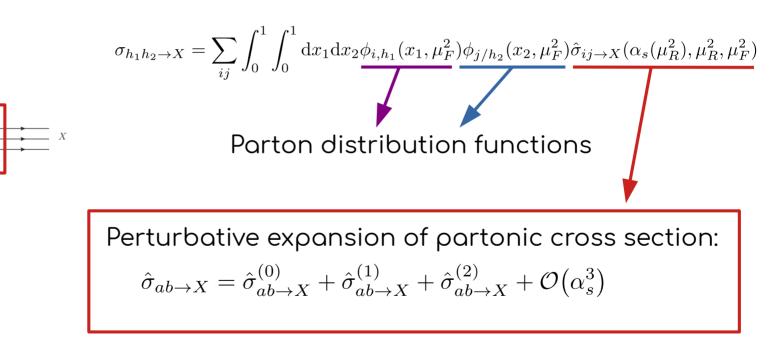
18.6.2021 CERN QCD Lunch

Rene Poncelet - Cambridge


Three jet production – R32(HT,y*)

Double differential w.r.t. $y^* = |y(j_1) - y(j_2)|/2$ Different central scale choice: $\hat{H}_T/2$

18.6.2021 CERN QCD Lunch


Sector-improved residue subtraction

18.6.2021 CERN QCD Lunch

Hadronic cross section

Hadronic cross section:

18.6.2021 CERN QCD Lunch

 $x_2 p_2$

 $x_1 p_1$

 p_2

Partonic cross section beyond LO

Perturbative expansion of partonic cross section: $\hat{\sigma}_{ab\to X} = \hat{\sigma}_{ab\to X}^{(0)} + \hat{\sigma}_{ab\to X}^{(1)} + \hat{\sigma}_{ab\to X}^{(2)} + \mathcal{O}(\alpha_s^3)$

Contributions with different multiplicities and # convolutions:

$$\hat{\sigma}_{ab}^{(2)} = \frac{\hat{\sigma}_{ab}^{\text{RR}} + \hat{\sigma}_{ab}^{\text{RV}} + \hat{\sigma}_{ab}^{\text{VV}} + \hat{\sigma}_{ab}^{\text{C2}} + \hat{\sigma}_{ab}^{\text{C1}}}{\textbf{L}}$$

Each term separately IR divergent. But sum is: → finite

→ regularization scheme independent Considering CDR ($d = 4 - 2\epsilon$): → Laurent expansion: $\hat{\sigma}_{ab}^{C} = \sum_{i=-4}^{0} c_{i}\epsilon^{i} + \mathcal{O}(\epsilon)$

$$\hat{\sigma}_{ab}^{\mathrm{RR}} = \frac{1}{2\hat{s}} \int \mathrm{d}\Phi_{n+2} \left\langle \mathcal{M}_{n+2}^{(0)} \middle| \mathcal{M}_{n+2}^{(0)} \right\rangle \mathcal{F}_{n+2}$$

$$\hat{\sigma}_{ab}^{\text{RV}} = \frac{1}{2\hat{s}} \int d\Phi_{n+1} 2\text{Re} \left\langle \mathcal{M}_{n+1}^{(0)} \middle| \mathcal{M}_{n+1}^{(1)} \right\rangle F_{n+1}$$

$$\hat{\sigma}_{ab}^{\text{VV}} = \frac{1}{2\hat{s}} \int \mathrm{d}\Phi_n \left(2\text{Re} \left\langle \mathcal{M}_n^{(0)} \middle| \mathcal{M}_n^{(2)} \right\rangle + \left\langle \mathcal{M}_n^{(1)} \middle| \mathcal{M}_n^{(1)} \right\rangle \right) \mathbf{F}_n$$

$$\hat{\sigma}_{ab}^{C1} = (\text{single convolution}) F_{n+1}$$

$$\hat{\sigma}_{ab}^{C2} = (\text{double convolution}) \mathbf{F}_n$$

18.6.2021 CERN QCD Lunch

Sector decomposition I

- Considering working in CDR:
- \rightarrow Virtuals are usually done in this regularization
- \rightarrow Real radiation:
 - \rightarrow Very difficult integrals, analytical impractical (except very simple cases)!
 - \rightarrow Numerics not possible, integrals are divergent: ϵ -poles!

How to extract these poles? \rightarrow Sector decomposition!

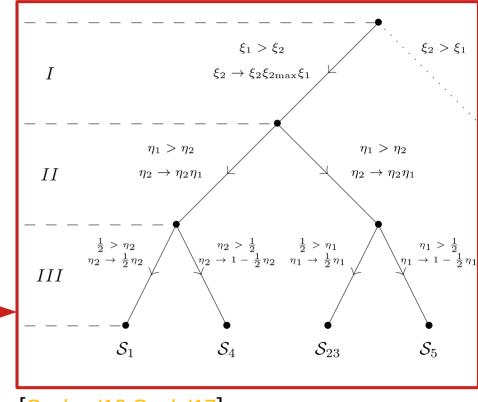
Divide and conquer the phase space:

1 =

Sector decomposition II

Divide and conquer the phase space:

- → Each $S_{ij,k}/S_{i,k;j,l}$ has simpler divergences. Soft and collinear (w.r.t parton k,l) of partons i and j
- \rightarrow Parametrization w.r.t. reference parton:


$$\hat{\eta}_i = \frac{1}{2}(1 - \cos\theta_{ir}) \in [0, 1]$$
 $\hat{\xi}_i = \frac{u_i^0}{u_{\max}^0} \in [0, 1]$

 \rightarrow Subdivide to factorize divergences

 \rightarrow double soft factorization:

 $\theta(u_1^0 - u_2^0) + \theta(u_2^0 - u_1^0)$

 \rightarrow triple collinear factorization

Czakon'10,Caola'17

Sector decomposition III


Factorized singular limits in each sector:

$$\frac{1}{2\hat{s}} \int \mathrm{d}\Phi_{n+2} \,\mathcal{S}_{kl,m} \left\langle \mathcal{M}_{n+2}^{(0)} \middle| \mathcal{M}_{n+2}^{(0)} \right\rangle \mathbf{F}_{n+2} = \sum_{\text{sub-sec.}} \int \mathrm{d}\Phi_n \prod \mathrm{d}x_i \underbrace{x_i^{-1-b_i\epsilon}}_{\text{singular}} \mathrm{d}\tilde{\mu}(\{x_i\}) \underbrace{\prod x_i^{a_i+1} \left\langle \mathcal{M}_{n+2} \middle| \mathcal{M}_{n+2} \right\rangle}_{\text{regular}} \mathbf{F}_{n+2}$$

Regularization of divergences:

$$x^{-1-b\epsilon} = \underbrace{\frac{-1}{b\epsilon}}_{\text{pole term}} + \underbrace{[x^{-1-b\epsilon}]_{+}}_{\text{reg. + sub.}} \qquad \qquad \int_{0}^{1} \mathrm{d}x \, [x^{-1-b\epsilon}]_{+} \, f(x) = \int_{0}^{1} \frac{f(x) - f(0)}{x^{1+b\epsilon}}$$

Finite NNLO cross section

Phase space cut and differential observable introduce *mis-binning* : mismatch between kinematics in subtraction terms → leads to increased variance of the integrand → slow Monte Carlo convergence

New phase space parametrization [Czakon'19]: Minimization of # of different subtraction kinematics in each sector

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space: $\{P, r_j, u_k\} \rightarrow \{\tilde{P}, \tilde{r}_j\}$

Requirements:

- Keep direction of reference r fixed
- Invertible for fixed $u_i: \left\{\tilde{P}, \tilde{r}_j, u_k\right\} \rightarrow \{P, r_j, u_k\}$ Preserve Born invariant mass: $q^2 = \tilde{q}^2, \ \tilde{q} = \tilde{P} \sum_{k=1}^{n_{fr}} \tilde{r}_j$

Main steps:

- Generate Born configuration
- Generate unresolved partons u_i
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration

18.6.2021 CERN QCD Lunch

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space: $\{P, r_j, u_k\} \rightarrow \{\tilde{P}, \tilde{r}_j\}$

Requirements:

- Keep direction of reference r fixed
- Invertible for fixed $u_i: \left\{\tilde{P}, \tilde{r}_j, u_k\right\} \rightarrow \{P, r_j, u_k\}$ Preserve Born invariant mass: $q^2 = \tilde{q}^2, \ \tilde{q} = \tilde{P} \sum_{k=1}^{n_{fr}} \tilde{r}_j$

Main steps:

- Generate Born configuration
- Generate unresolved partons u_i
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

Mapping from n+2 to n particle phase space: $\{P, r_j, u_k\} \rightarrow \{\tilde{P}, \tilde{r}_j\}$

Requirements:

- Keep direction of reference r fixed
- Invertible for fixed $u_i: \left\{\tilde{P}, \tilde{r}_j, u_k\right\} \rightarrow \{P, r_j, u_k\}$ Preserve Born invariant mass: $q^2 = \tilde{q}^2, \ \tilde{q} = \tilde{P} \sum_{k=1}^{n_{fr}} \tilde{r}_j$

Main steps:

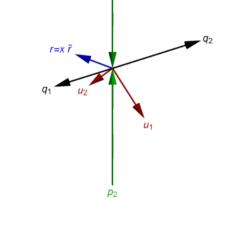
- Generate Born configuration
- Generate unresolved partons u_i
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration

Rene Poncelet - Cambridge

r = x

New phase space parametrization:

Minimization of # of different subtraction kinematics in each sector

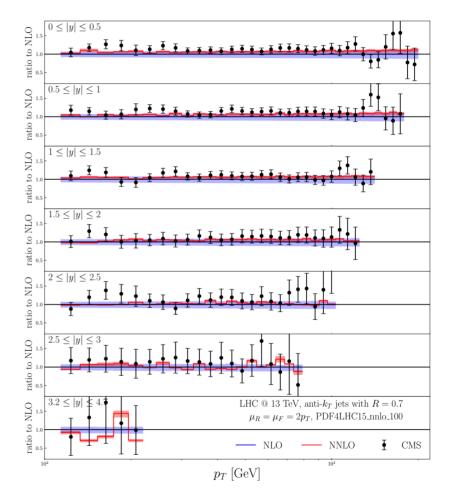

Mapping from n+2 to n particle phase space: $\{P, r_j, u_k\} \rightarrow \{\tilde{P}, \tilde{r}_j\}$

Requirements:

- Keep direction of reference r fixed
- Invertible for fixed $u_i: \left\{\tilde{P}, \tilde{r}_j, u_k\right\} \rightarrow \{P, r_j, u_k\}$ Preserve Born invariant mass: $q^2 = \tilde{q}^2, \ \tilde{q} = \tilde{P} \sum_{k=1}^{n_{fr}} \tilde{r}_j$

Main steps:

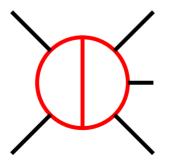
- Generate Born configuration
- Generate unresolved partons u_i
- Rescale reference momentum $r = x\tilde{r}$
- Boost non-reference momenta of the Born configuration Rene Poncelet - Cambridge



18.6.2021 CERN QCD Lunch

25

Ultimate check: single inclusive jets


- Well studied observable:
 - NNLOJet [Currie, Gehrmann-De Ridder, Gehrmann, Glover, Huss, Pires '16-19]
- Full colour [Czakon'19]:
 - Tests all possible IR subtraction terms
 - Comparison to NNLOJet results:
 - Found full agreement within MC error
 - Puts bounds on sub-leading colour terms ~1-2 %

Further technical developments

- Narrow-width-approximation and Double-Pole-Approximation for resonant particles:
 - Top-quark pairs + decays [Czakon'19'20]
 - W+W- polarization [Poncelet'21]
- Automated interfaces to OpenLoops, Recola and Njet
- Implementation of state-of-the-art twoloop matrix-elements:
 - $2 \rightarrow 2(1) : \rho \rho \rightarrow VV, \rho \rho \rightarrow Vj, \rho \rho \rightarrow H (j), e+e- \rightarrow jets, DIS$
 - 2 \rightarrow 3: Pp \rightarrow 3y, pp \rightarrow 2y + j, pp \rightarrow 3j
- Fragmentation of massless partons into hadrons
 - First application to $pp \rightarrow tt + X \rightarrow l+l- v v \sim B + X$ (NWA) [Czakon'21]
- Countless small improvements in terms of organization and efficiency

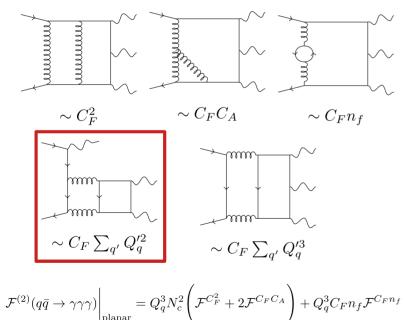
Five-point amplitudes

18.6.2021 CERN QCD Lunch

Five-point amplitudes - Overview

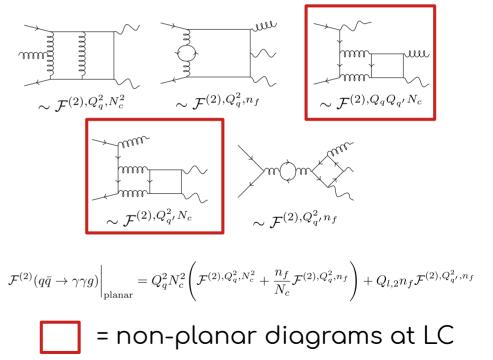
The all massless case:

• $pp \rightarrow jjj$

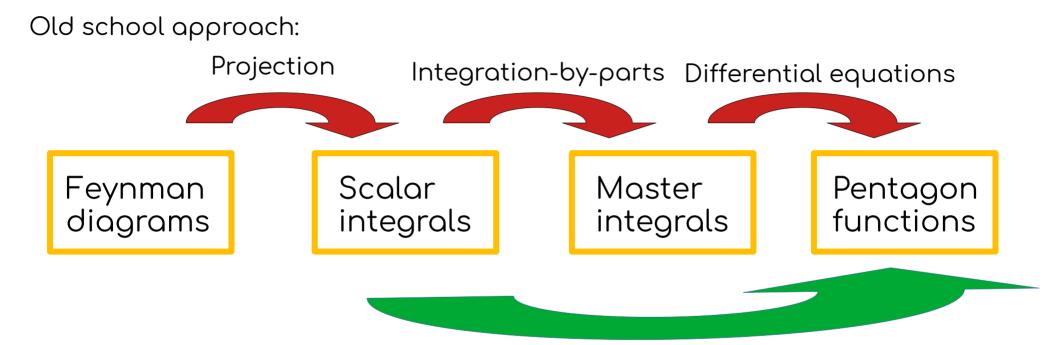

- Euclidean results: insights in rational structure of amplitudes [Abreu'19]
- Physical phase space [Abreu'21]:
 - based on 'pentagon-functions' by Chicherin and Sotnikov
 - efficient evaluation times (~1sec) \rightarrow 'pheno-ready'
- $pp \rightarrow \gamma \gamma \gamma$
 - First, squared matrix elements with 'pentagon-functions' by [Gehrmann'18]. Very slow, however usable for pheno application [Chawdhry'19].
 - Helicity amplitudes with new 'pentagon-functions' [Abreu'20,Chawdhry'20]
- $pp \rightarrow \gamma \gamma j$
 - Squared matrix element in planar limit [Agarwal'21]
 - Helicity amplitudes in planar limit [Chawdhry'21]
 - Both in full glory [Agarwal'21] + gg induced [Badger'21]
- $pp \rightarrow \gamma jj$ \leftarrow untouched territory so far...

18.6.2021 CERN QCD Lunch Rene Poncelet - Cambridge

Planar five-point amplitudes


 $q\bar{q} \to \gamma\gamma\gamma$

- 3 independent helicities
- QED x QCD \rightarrow leading color \neq planar


$$q\bar{q} \rightarrow g\gamma\gamma \quad qg \rightarrow q\gamma\gamma$$

• Kinematics: $\{s_{ij}\} = \{s_{12}, s_{23}, s_{34}, s_{45}, s_{51}\}$ $\operatorname{tr}_5 = 4i\epsilon(p_1, p_2, p_3, p_4)$

18.6.2021 CERN QCD Lunch

Our framework

Automated framework using finite fields to avoid expression swell based on Firefly [Klappert'19'20]

18.6.2021 CERN QCD Lunch

Projection

Projection to helicity amplitudes based on [Chen '19]

Spin structure of $q\bar{q} \rightarrow \gamma\gamma\gamma$ and $q\bar{q} \rightarrow g\gamma\gamma$: $\mathcal{M}^{\bar{h}} = \epsilon_{3,h_3}^{*\mu} \epsilon_{4,h_4}^{*\nu} \epsilon_{5,h_5}^{*\rho} \bar{v}(h_2) \Gamma_{\mu\nu\rho} u(h_1)$

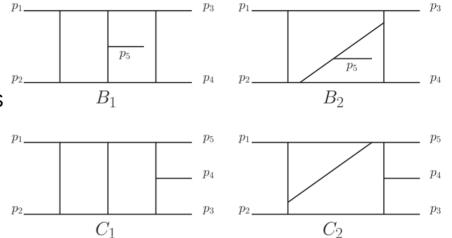
Explicit representation of polarization vectors in terms of momenta (d=4):

$\epsilon_{i,h}^{\mu} = \frac{1}{\sqrt{2}} (\epsilon_{i,X}^{\mu} + hi\epsilon_{i,Y}^{\mu}) \qquad \begin{array}{l} \text{Ansotz:} & \text{Constraints:} \\ \epsilon_{i,X}^{\mu} = c_{i,1}^{X} p_{1}^{\mu} + c_{i,2}^{X} p_{2}^{\mu} + c_{i,3}^{X} p_{i}^{\mu} \\ \Rightarrow \epsilon_{i,Y}^{\mu} = \mathcal{N}_{i,Y} \epsilon_{\nu\rho\sigma}^{\mu} q^{\nu} p_{i}^{\rho} \epsilon_{i,X}^{\sigma} \end{array} \qquad \begin{array}{l} \epsilon_{i,X} \cdot q = 0, \quad \epsilon_{i,X} \cdot p_{i} = 0 \\ \epsilon_{i,X} \cdot p_{i} = 0 \end{array}$

Spinors expressed through trace:

$$\mathcal{M} = \bar{v}(p_2, h_2)\Gamma u(p_1, h_1) = \operatorname{Tr}\left\{ \left(u \otimes \bar{v} \right) \Gamma \right\} \qquad (u \otimes \bar{v})_{\alpha\beta} = \frac{\bar{u}Nv}{\bar{u}Nv} (u \otimes \bar{v})_{\alpha\beta} = \frac{1}{\mathcal{N}} [(u \otimes \bar{u})N(v \otimes \bar{v})]_{\alpha\beta}$$

Application to Feynman diagrams \rightarrow scalar expression: $\mathcal{M} = \sum c(\{s_{ij}\}, tr_5, d)I(\{s_{ij}\}, d)$ Note: bare amplitudes are scheme-dependent, finite remainders are not18.6.2021 CERN QCD LunchRene Poncelet - Cambridge


31

Integration-by-parts identities and masters

Analytically derived IBP tables [Chawdhry'18]:

- \rightarrow Strategy: solve 1 master integral at a time
- \rightarrow Crossed kinematics by finite field numerics
- \rightarrow Translated to UT basis in [Chicherin'20]

$$I(\{s_{ij}\}, d) = \sum \tilde{c}(\{s_{ij}\}, d) \mathrm{UT}(\{s_{ij}\}, d)$$

Representation of master integrals in terms of 'pentagon-functions' of weight i : $\vec{t_i}$

$$\mathrm{UT}(\{s_{ij}\}, d) = \sum_{i=0}^{4} \left(\vec{c_i} \cdot \vec{t_i}\right) \epsilon^i$$

18.6.2021 CERN QCD Lunch

$\mathcal{F} = \mathcal{M} - \mathrm{IR}/\mathrm{UV} = Q_q^2 \mathcal{F}^{(0),Q_q^2} \left(1 + \left(\frac{\alpha_s}{4\pi}\right) \left(C_F \mathcal{R} + \left(\frac{\alpha_s}{4\pi}\right)^2 \left(N_c^2 \mathcal{I}\right)^2\right)\right)$

$$\mathcal{R}^{(\ell),i,c} = \sum_{e} r_e^{(\ell),i,c} t_e$$

: Combinations of transcendental functions

 $r_e^{(\ell),i,c}$: rational in s_{ij} and linear in tr_5

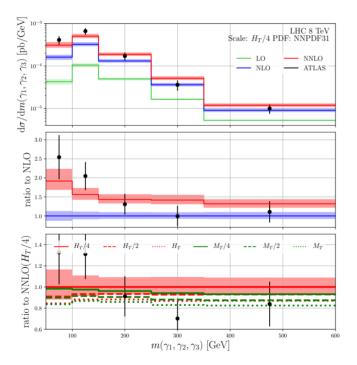
 \rightarrow Exploiting Q-linear relations among rationals:

 t_e

Amplitudes! Assemble!

All bits known analytically, but adding them up is cumbersome... Using the increasingly adapted finite field approach (using Firefly): → evaluating all components in finite field points

 \rightarrow doing the sums


 $\rightarrow \text{reconstruct the finite remainder amplitude:}$ $\mathcal{F} = \mathcal{M} - \text{IR}/\text{UV} = Q_q^2 \mathcal{F}^{(0),Q_q^2} \left(1 + \left(\frac{\alpha_s}{4\pi}\right) \left(C_F \mathcal{R}^{(1),Q_q^2,C_F} + \frac{T_F}{C_A} \mathcal{R}^{(1),Q_q^2,T_F/C_A} + T_F \frac{Q_{l,2}}{Q_a^2} \mathcal{R}^{(1),Q_{q'}^2,T_F} \right)$

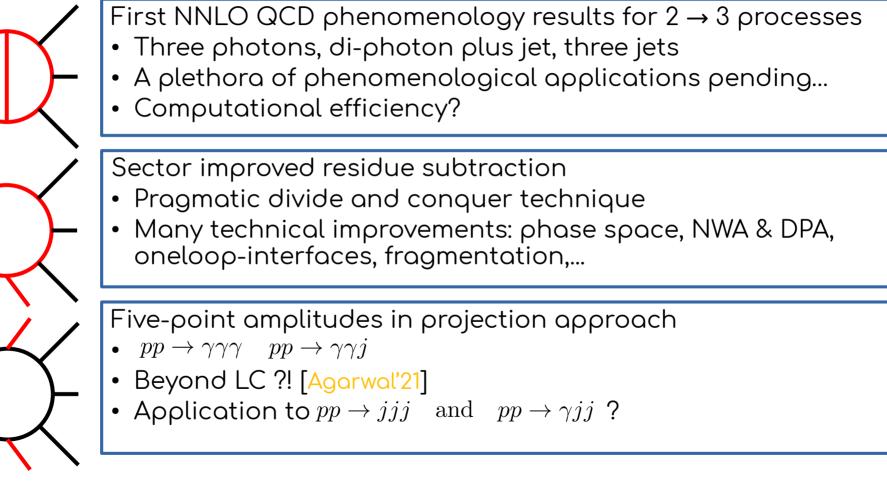
$$= \frac{1}{C_A} \mathcal{R}^{(1),Q_q,O_F} + \frac{1}{C_A} \mathcal{R}^{(1),Q_q,I_F/O_A} + T_F \frac{Q_1}{Q_q^2} \mathcal{R}^{(1),Q_{q'},I_F} \right)$$

$$= \frac{1}{C_C} \mathcal{R}^{(2),Q_q^2,N_c^2} + N_c n_f \mathcal{R}^{(2),Q_q^2,n_f} + n_f \frac{Q_{l,2}}{Q_q^2} \mathcal{R}^{(2),Q_{q'}^2,n_f} \bigg) \bigg)$$

Closing the loop

 $pp \rightarrow \gamma \gamma \gamma$

$$pp \rightarrow \gamma \gamma j$$



18.6.2021 CERN QCD Lunch

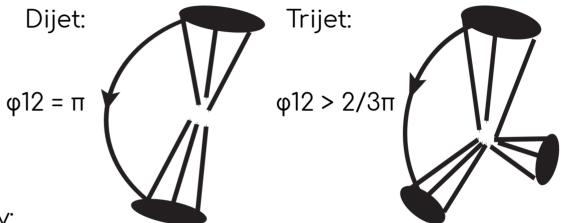
Summary & Outlook

18.6.2021 CERN QCD Lunch

Summary and Outlook

Summary and Outlook

Thank you for your attention!


18.6.2021 CERN QCD Lunch

Backup

18.6.2021 CERN QCD Lunch

Three jet production – azimuthal decorrelation

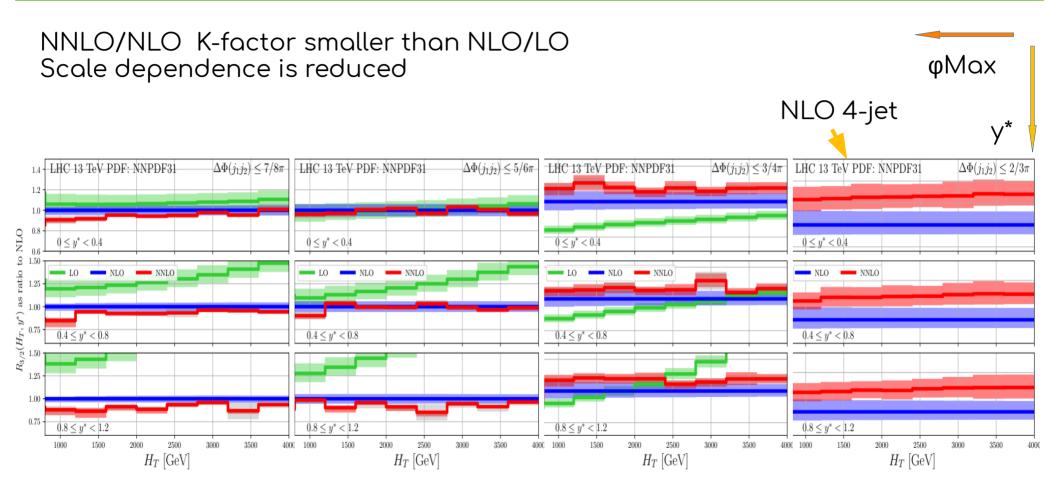
Kinematic constraints on the azimuthal separation between the two leading jets (φ12)

 φ 12 sensitive to the jet multiplicity:

2j: φ12 = π 3j: φ12 > 2/3π

4j: unconstrained

Study of the ratio


R32(HT,y*, ϕ Max) = (d σ 3(ϕ < ϕ Max)/dHT/dy*)/(d σ 2/dHT/dy*)

With y* = |y1-y2|/2

Rene Poncelet - Cambridge

18.6.2021 CERN QCD Lunch

Three jet production – R32(HT,y*,φMax)

18.6.2021 CERN QCD Lunch