

- Was a detector element hit?
- How much energy?
 - What time?

Reconstructed data:

- Momentum of tracks (4-vectors)
- Origin
- Energy in clusters (jets)
 - Particle type
 - Calibration information
 - Analysis Objects

150 Million sensors deliver data ...40 Million times per second

Generates ~ 1 PB per second

Maria Girone CERN openiab CTO

Hardware

- Primary computing resources is the WLCG, a globally distributed storage and processing infrastructure
- 167 sites over 42 countries
- ~1M CPU cores and ~1 exabyte of storage (disk and tape)

Elapsed Wall CPU hours "Processors in last 12 months period 5,863,850,661

Number of jobs in last 12 months period 455,137,564

Elapsed CPU Wall hours in last 12 months period 4,912,622,032

The Worldwide LHC Computing Grid

Maria Girone CERN openlab CTC

Run2 – Average 40 collisions per crossing

LHCb and ALICE will be upgraded for Run3 and will collect much more data

The LHC will be upgraded for Run4 to the High Luminosity LHC (HL-LHC). This will deliver:

- x10 increase in luminosity over LHC design
- · great increase in event complexity
- more collisions and more complex data will result in a compute challenge at the Exascale level

Run4 – Average 200 collisions per crossing

Gap between needed/available computing resources

- CMS estimate computing power needs to be ~6-10x higher
- CMS estimate disk needs to be ~3-5x times larger
- ATLAS estimates are similar

Investments for R&D in

- Code modernization and optimization
- Adapting code to hardware accelerators and HPC
- Reducing storage needs
- New techniques like AI and ML

Computing Challenges

HEP and the Computing Landscape

Four Pillars of Activity

XT eXascale Technologies

A comprehensive investigation of HPC and Cloud infrastructures, frameworks, tools to support key scientific workloads and applications

Al-S Artificial Intelligence for Science

Analysis and development of algorithms, optimisation for new architectures, interpretability, synergies between Physics and other sciences

QTI-C Quantum Technology Initiative - Computing

Assess the potential impact of quantum computing in HEP and other sciences, investigate quantum machine learning algorithms and areas of potential quantum advantage, set up a collaborative quantum computing (simulation) platform

MSC Multi-Science Collaborations

Share the expertise and knowledge generated across all activities with other sciences, work with CERN KT to explore novel applications of CERN computing systems and ideas, create collaborations and contribute to common solutions

CERN openlab R&D's: HPC, AI, and QC

HPC falls at the intersection of several important R&D areas

EXPANDING RESOURCES FOR DATA INTENSIVE SCIENCES

HPC

HPC Supercomputers will grow by a factor of 10 on the time scale of the HL-LHC

Engagement with the HPC
Community can be a catalyst for progress

ADOPTING AI/ML TECHNIQUES EVOLVING TO
HETEROGENOUS
ARCHITECTURES
(software
performance,
portability
libraries,..)

A thorough R&D program has been established

Unified programming models facilitate HPC adoption

High Performance Computing

- An HPC Collaboration agreement was signed by CERN, SKAO, GÉANT and PRACE, CERN and SKA on 22.07.2020
 - Engages at the community level
 - Bringing together data intensive sciences, high-performance computing infrastructures and networking
- Collaboration built around 4 pillars
 - Building a common centre with expertise to support heterogenous hardware
 - Benchmarking Demonstrator
 - Data Access Demonstrator
 - Authentication and Authorization Demonstrator

An Exascale project for an Exascale problem

Working Together: The HPC Collaboration

https://home.cern/news/news/computing/c ern-skao-geant-and-prace-collaborate-highperformance-computing

CERN, SKAO, GÉANT and PRACE to collaborate on high-performance computing

he next generation of high-performance computers holds significant promise for both article physics and astronomy but key challenges remain to be addressed

Maria Girone CERN openlab CTC 13

Collaborations

Norwegian University of Science and Technology

Maria Girone, CERN openlab Technical Workshop 2021

Participation on the path to exascale

Maria Girone CERN openlab CTO

Proven CERN capability

In development, opportunity for joint R&D

Use case specific

Fast ML

Ultra-fast on-edge inference under strict latency constraints

Anomaly detection Industrial controls

Object identification,

classification,

anomaly detection in

big and noisy data

sets

Machine efficiency and predictive maintenance with industrial control systems

Distributed computing

Optimization of distributed computing, storage, and networks; fast I/O for large files

Large scale, science grade data analytics and visualization

Cross use case

- Optimization and evaluation for science-grade precision of large data sets using advanced data analytics
- Data visualization, interactive plotting (e.g., statistical visualizations, uncertainties, distributions), model visualization
- Large-scale, quality-controlled CERN data as testbed/ benchmark (e.g., single data set with 100m examples, >1TB)

Simulation

Simulation and reconstruction with generative DL for efficient computation

ML in Robotics

Remote maintenance and safety with autonomous robots and computer vision

Graphs

Exploring Graph NNs for high-multiplicity problems with non-linear distances

Quantum ML

Research quantum algorithms to solve pattern recognition, classification and generation problems

ipns

Determining optimal machine design and component configuration

Computing parallelization

Training and optimization of complex NNs on parallelized GPU infrastructure

Progress on AI/ML Capabilities

Launched in January the RAISE Center of Excellence enabled researchers from science and industry to develop novel, scalable Artificial Intelligence technologies towards Exascale along representative use-cases from Engineering and Natural Sciences

CERN is leading the leading the data driven use-cases

AI/ML Projects

Challenges

Software and Architectures

Benchmarking and Accounting

Data Processing and Access

Authorization and Authentication

Runtime Environments and Containers

Provisioning

Wide and Local Area Networking

Supercomputers are early adopters of heterogenous architectures

Performance on diverse architectures needs to be understood

Enormous data volumes to stage, process, and export

Strict cyber security

Resources are shared, environment needs to be brought with the workload

Resources allocated for periods of time through allocations

Processing and storage resources are separate

Challenges in HPC Integration

The common challenges for HPC integration into LHC Computer were described in an engagement document

https://zenodo.org/record/3647548#.YBnA1y2cbVs

Develop an energy-efficient system architecture that fits HPC and HPDA workloads

Build a fully working Modular Supercomputer Architecture prototype to Exascale

Large variety of hardware available supporting the different requirements of HPC, Big Data Analytics and Machine Learning with highest efficiency and scalability

Optimising HEP applications towards Exascale

Within the DEEP-EST project, re-engineered CMS ECAL and HCAL local reconstruction workloads to use GPUs using CUDA

- Achieving between 3x(ECAL) and 8x(HCAL) using Nvidia V100 vs filling in 2-socket Intel Xeon Gold 6148
- Now integrated with CMS framework and will be used in the CMS HLT reconstruction for Run3

Performance studies on the HEP MC generator code on GPUs using CUDA

The idea is to enable utilization of heterogenous architectures for MC generation as well

We are investigating unified programming models to create sustainable code that can be supported on multiple architectures

Results on Open Data: http://opendata.cern.ch/record/12303

Progress Using Heterogenous Architectures

Maria Girone CERN openlab CTC

How do we bring large datasets to supercomputers

WLCG Data Lake model separates storage and processing functionality. HPC will be a part of the Data Lake model

- Relies on caching and networking
- EuroHPC will have significant WAN connectivity and disk space

Technical Activities

Execute a series of data challenges to demonstrate the feasibility of the Data Lake model on a path to Exascale

Data Access – Data Lakes

Global DM System federates and define (Ouotas, Acls, Replication rules)

Enabling storage QoS Data lifecycles, distributed redundancy, etc.

Latency hiding and content delivery

HEP data is primarily stored as files, optimized for highly parallel HTC

- **ROOT** is the HEP analysis framework
- **ROOT** defines columnar data layout tailored for HEP: extreme throughput compared to alternatives
- https://root.cern

ROOT Challenges

- Maximize throughput I/O and optimize for HPC
- Optimize persistent data layout to facilitate conversion for CPU, GPU, SIMD (<u>LLAMA</u>), read patterns, and storage backend

Ongoing R&D, bringing >4GB/s from off-the-shelf desktop to HPC

ROOT team bringing heterogenous computing and environments to physicists

- <u>Declarative programming</u>: physicists define data + analysis flow; "kernel graph" built behind the scene with runtimedetected input data types
- <u>Transparent acceleration:</u> algorithms (modelling / minimization) in multi-arch libraries selected at runtime, covering architectures' SIMD to GPU
 - Optimal abstraction? Autovec + CUDA / std::simd /al/>aka

Spark

- <u>Enabling feature</u>: C++ just-in-time compilation (<u>cling</u>); also supports runtime-CUDA. Use of C++ automatic differentiation (<u>clad</u>) for minimization
- <u>Scaling:</u> multi-threaded (>200 cores), distributed backends (dask / spark /...)

Courtesy of A. Naumann

HEP Data in HPC

CERN openlab CTO

Benchmarking Activities

- PRACE-CERN-GÉANT-SKAO collaboration brings opportunity to expand capabilities using tools already developed for HPC sites by each community:
 - Unified European Applications Benchmark Suite (UEABS)- 13 workloads for HPC
- CERN is evolving the approach to benchmarking in HEP to embrace HPC:
 - Builds on experience from WLCG computing environment tools
 - Developed with secure, self-contained workload images (Singularity)
 - · Assumes no privileges, no docker, limited/restricted node connectivity

Benchmarking Demonstrator

HEP-Score (CPUS & GPUS)

HEP Workflows on HPC

Courtesy of D. Southwick

Maria Girone

IceCube with OSG and UCSD have been producing simulation with GPUs using the major commercial cloud providers

- Over the 9h test reached 1 exaflop/hour delivered
 - 150PF/h

Simulation on Commercial Clouds

Demonstration of cloud analysis access was shown on CMS open data during CHEP, Adelaide 2019

 Analyzing 70TB of data and generates the Higgs discovery plot in about 20 minutes

Cloud Use for Analysis

ATLAS Computing Model (CM) designed to use distributed computing centers. CM based on three main pillars: Data Management (Rucio), Workload Management (PanDA) and monitoring

- ATLAS decided to add HPCs and to integrate High Throughput Computing (Grid) with HPC. HPCs integrated into the production, analysis and data management systems (also to monitoring and accounting) in 2016
- Over the past 7 years, the ATLAS experiment collaborated with many large HPC sites for full integration into ATLAS distributed computing

CMS continuously invests effort to build up expertise on HPC resources integration

- Given the unicity of the HPC Machines multiple approaches have been successfully commissioned:
 - HEPCloud: US-CMS gateway to provide access for CMS to US HPC
 - Site extension: mechanism exploited at CINECA Marconi A2 and ForHLR2(KIT) and CLAIX(RWTH Aachen)
- Working on the exploitation of CPU resources at HPC centres where compute nodes do not have external network connectivity.

Experiment Use of HPC

Maria Girone CERN openlab CTC 29

- A large number of HPCs contributed worldwide. Clear demonstration that we can integrate diverse mix of HPC systems to enable LHC physics
 - Incomplete list of integrated centers: CSCS, MareNostrum, OLCF, ALCF, NERSC, TACC, LRZ, Nordic HPCs, RU NRC KI, iT4I,
- ATLAS focused on enabling all HPC centers available to ATLAS into the distributed computing system
- New opportunities with EuroHPC project :
 - New ways how physics analysis and data processing will be done

ATLAS jobs normalized wallclock consumption at Tier-1 in Barcelona Jan 2020 - Jan 2021

ATLAS jobs normalized wallclock consumption. All resources
Jan 2020 - Jan 2021

ATLAS weekly CPU consumption in 2018 (LHC Run2)

 HPC delivered 700 million CPU wallclock hours for Monte-Carlo simulations

Courtesy of D. Benjamin A. Filipic, A.Klimentov

ATLAS CPU Resource Mix

Maria Girone ERN openlab CTO 30

- First use of HPC as a WLCG Tier 2
 Center
- Using ARC-CE and ARC cache

MareNostrum

- Served by ARC-CEs located in Spanish Tier 1/2 WLCG centers)
- Using singularity container (no internet from WN) for ATLAS SW and databases (O(100GB))

Software developed to address HPC challenges:

ATLAS software in containers, granular data processing, seamless integration with grid, preemption, backfill mode, ...

Courtesy of D. Benjamin A. Filipic, A.Klimentov

EU-HPC Integration with ATLAS Computing

HEP is facing an unprecedented computing challenge from the Exabytes of data expected from the HL-LHC

• We have successfully operated our distributed computing environment, the WLCG, for more than a decade and exploited globally distributed computing resources to realize the scientific potential of our data

Looking forward, we will need more resources and opportunities with HPC/commercial clouds may play an important role

- We are involved in projects to exploit exascale capabilities for data-intensive science
 - Continuing explorations of heterogenous architectures
 - Building the expertise in AI/ML
 - Increasing scale of processing and data access solutions
 - Liaising to technology providers through CERN openlab

We are working with to establish enablers for data intensive science using HPC and commercial cloud resources

Outlook