POWHEG BOX report for LHCC Review

Emanuele Re

LAPTh Annecy

24 June 2021

The POWHEG BOX framework

- Main focus: matching of accurate fixed-order predictions with PS for SM processes, mostly for LHC Physics
- Several BSM applications exist, but not the main focus so far
- Strategy / Organization:
 - Public to all theorists that want to contribute (\sim 100 processes, \sim 100 authors contributed)
 - Some "core" developers, not really a stricly well defined collaboration
 - Fully supported interfaces: OpenLoops, GoSam, Madgraph4, MG5_aMC@NLO
- All publicly available at

powhegbox.mib.infn.it

- Two main releases
 - distributed through ${\rm svn},$ webpage with extensive report of bugfixes and revision
 - POWHEG BOX V2: main release, almost all processes are here
 - POWHEG BOX RES: most recent one, created to deal with processes with resonances

General Q/A

- Are there plans/funds in place to continue support through HL-LHC?
- Support and development will continue, currently no dedicated funds.
- What major physics updates do you foresee for HL-LHC?
- Main directions: NNLO QCD + PS ${\tt MiNNLO_{PS}},$ NLO EW + PS, interplay with modern parton showers
- All these points, and the latter in particular, might require major rethinking/recoding of core parts of the software
- Major software updates foreseen for HL-LHC:
- Realistically, due to manpower, core of the software likely to remain ${\tt fortran}$ based, with modern <code>f90</code> structures
- interest to start thinking about using GPU for some aspects
- [more later]
- Issues or areas of work where help from HSF or from the experiments may be needed:
- Very useful for us to have contacts in the EXP community, particularly to test new developments, also before public releases.
- It has worked well so far
 - . Interest from ATLAS and CMS manifest \rightarrow we help you \rightarrow we appreciate a lot (and we need) your feedback.
 - . Are there other opportunities from HSF ?

ME+PS Q/A

- What updates in physics precision are foreseen for HL-LHC ?
- Main direction: LHC Physics.
- In practice: NNLO QCD + PS (MiNNLOPS), NLO EW + PS, interplay with modern parton showers.
- Possible that other areas will start to be addressed, difficult to predict (e.g. loop-induced [some results exist], extremely high-multiplicity, e^+e^- , etc...)
- Current CPU performance bottlenecks / planned improvements in computing performance:
- So far, even for more complex processes, we managed to deal with them through "reweighting" + "parallelization".
 - . reweighting: minimize calls to CPU-intensive routines / avoid recomputing
 - . parallelization: so far, no need of particularly complicated arrangements (that we are aware of), just multicore
 - . POWHEG-BOX-RES: driver for running MPI jobs, still trivial parallelization, but synchronization at the end of each parallel stage
 - . plans to explore GPU

[more later]

- Memory: facility to compress I/O (read/write)
- Negative weights: doesn't seem (?) to be a major issue wrt other generators

- GPU/ML:
- No timescale yet, no work really done so far
- considerable and growing interest to explore the use of GPU / ML-inspired techniques
- Efficient PS sampling \leftrightarrow generation of "underlying Born" events according to $\overline{B}(\Phi_B)$ is typically the more computationally delicate aspect of the POWHEG core algorithm, requires large statistics, multidimensional integrals

- ▶ NNLO QCD + PS through MiNNLOPS: what's available?*
 - V2: { W, Z, ggH } \rightarrow public
 - V2: { top-pair } \rightarrow tarball sent to ATLAS/CMS contacts
 - **RES**: $\{WW\} \rightarrow \text{public}$
 - to be expected soon: other diboson processes (including $Z\gamma$), VH

V is a shortcut: decays fully implemented.

POWHEG BOX Q/A

NNLO QCD + PS through MiNNLOps: performances
 ggH:

 step 1+2+3 ~ 1 day
 < 4 − 5 sec/event
 neg. weights: ~ 15%

 <u>DY:</u>

 step 1+2+3 ~ 1 day
 < 4 − 5 sec/event
 neg. weights: ~ 15%

 <u>DY:</u>

 step 1+2+3 ~ 1 day
 < 4 − 5 sec/event
 neg. weights: ~ 15%

- . step 1+2+3 $\sim 1~{\rm day}$
- . < 4 5 sec/event (possibly less)
- . neg. weights: $\sim 15\%$

POWHEG BOX Q/A

- NNLO QCD + PS through MiNNLOPS: performances
- $\blacktriangleright \underline{Z\gamma}$:
 - . slow convergence (EW/QCD singularity structure), large neg. weight fraction, needed \sim 100M events
 - . step 1+2+3 $\sim 3~{\rm day}$
 - . < 14 sec/event
 - . neg. weights: $\sim 28\%$
- ► <u>WW</u>:
 - . 2-loop amplitudes very slow, approximated via interpolation $\mbox{grid} \rightarrow \mbox{its}$ evaluation time subleading
 - . step 1+2+3 $\sim 3~{\rm day}$
 - . < 17 sec/event
 - . neg. weights: $\sim 20\%$
- ► <u>ZZ:</u>
 - . 2-loop amplitudes very slow, included via reweighting at stage 4 with caching and reweighting in batches of 1 event
 - . step 1+2+3 $\sim 3~{\rm day}$
 - . TBC
 - . TBC

- ▶ Very major changes in the code (V2 \rightarrow RES) when needed ("driven by Physics").
- difficult to immagine all processes to be migrated from $\ensuremath{\texttt{V2}}$ to $\ensuremath{\texttt{RES}}.$
- ► Tentative "future strategy" reported in this presentation
- Is there anything likely to be a major bottleneck/problem from the point of view of users / future computing facilities ?

Please let us know!