The Disk Partition function in String Theory

Sridip Pal Institute for Advanced Study

SFT, September 23, 2021

Based on 2105.08726 [hep-th]
Lorenz Eberhardt, SP

Why?

• Lower genus String partition functions are confusing and intiguing at the same time.

Unpacking the confusing element:

• Let us consider critical string (Bosonic)

$$S[g, X] = \frac{1}{4\pi\alpha'} \int_{\Sigma} d^2z \sqrt{g} g^{ab} \partial_a X^{\mu} \partial_b X^{\nu} G_{\mu\nu}(X) + \cdots$$

• We assume existence of one flat direction.

$$S = \frac{1}{2\pi\alpha'} \int d^2z \sqrt{g} g^{z\bar{z}} 2\partial X \bar{\partial} X$$

Unpacking the confusing element:

- We fix the conformal gauge.
- There is a combination of Weyl invariance and Diffeomorphism, which remains unfixed.
- For sphere, we have PSL (2,C) while for the Disk we have PSL(2,R)
- For three or higher point function, we use the gauge redundancy to fix the position of three vertex operators.
- Naively this implies that the lower point function vanishes.

Unpacking the confusing element:

- Naively this implies that the lower point function vanishes.
- Two point String amplitude is non vanishing. [H.Erbin, J.Maldacena, D. Skliros]

We will focus on Zero point (DISK) case!

Gauge redundancy in Disk:

$$\mathrm{PSL}(2,\mathbb{R}) \equiv \mathrm{SL}(2,\mathbb{R})/\mathbb{Z}_2$$
 $\begin{vmatrix} a & b \\ \overline{b} & \overline{a} \end{vmatrix}$ $|a|^2 - |b|^2 = 1$

• Action on the unit disk $z\mapsto \frac{az+b}{\overline{b}z+\overline{a}}$

$$Z_{ ext{Disk}} = rac{Z_{ ext{CFT}}}{ ext{Vol}(ext{PSL}(2, \mathbb{R}))}$$

Apparent volume of PSL(2,R):

$$\operatorname{PSL}(2,\mathbb{R}) \equiv \operatorname{SL}(2,\mathbb{R})/\mathbb{Z}_2 \qquad \begin{vmatrix} a & b \\ \overline{b} & \overline{a} \end{vmatrix} \qquad |a|^2 - |b|^2 = 1$$

$$a = e^{i\phi} \cosh x$$
 $x \in [0, \infty)$ $b = e^{i\psi} \sinh x$ $\phi \in [0, 2\pi), \psi \in [0, \pi)$

Apparent volume of PSL(2,R):

$$\operatorname{PSL}(2,\mathbb{R}) \equiv \operatorname{SL}(2,\mathbb{R})/\mathbb{Z}_2 \qquad \begin{bmatrix} a & b \\ \overline{b} & \overline{a} \end{bmatrix} \qquad |a|^2 - |b|^2 = 1$$

Volume

$$2\pi^2 \int_0^\infty \mathrm{d}x \cosh x \sinh x$$

DIVERGENT

Regularized volume of PSL(2,R):

• Volume $2\pi^2 \int_0^\infty dx \cosh x \sinh x$

Subtract off the DIVERGENCE [Liu, Polchinski 1989]

$$V_{reg} = \lim_{x_* \to \infty} \left(\int_{M_*} d^3 V \sqrt{g} - \frac{1}{2} \int_{\partial M_*} d^2 a \sqrt{h} \right)$$

Regularized volume of PSL(2,R):

[Liu, Polchinski 1989]

• GOAL: Obtain the above doing honest QFT calculation.

Gauge Fixing-Faddeev Popov

• Proceeds via choosing a gauge condition and inserting the following

$$1 = \int dg \ \Delta(X^g) \delta(F(X^g))$$

• Key Assumption: Gauge orbit intersects the Gauge fixing surface once and only once.

Gauge Fixing-Toy Example

$$1 = \int dg \ \Delta(X^g) \delta(F(X^g))$$

$$\#\text{Roots} = \int_{-\infty}^{\infty} dx \ |f'(x)| \delta(f(x))$$

Gauge Fixing-Toy Example

• Take Home Lesson: One can get rid of absolute value of Jacobian under suitable condition.

$$ds^2 = \frac{4dzd\bar{z}}{(1+|z|^2)^2}$$

• Choose the upper hemisphere metric

$$X = \sum_{\ell,m} X_{\ell,m} Y_{\ell,m}$$

• Expand in appropriate spherical Harmonics consistent with boundary condition

$$X_{2,\pm 1} = 0$$

Gauge fixing condition For Dirichlet

$$X_{1,\pm 1} = 0$$

Gauge fixing condition For Neumann

$$X_{2,\pm 1} = 0$$
 Gauge fixing condition For Dirichlet

$$X_{1,\pm 1} = 0$$
 Gauge fixing condition For Neumann

$$\gamma_{\alpha} = \frac{1}{\sqrt{1-\alpha^2}} \begin{bmatrix} 1 & \alpha \\ \bar{\alpha} & 1 \end{bmatrix}$$
 • Takes away from the Gauge fixing surface. • Remaining U(1) preserves it.

• Next GOAL: to find the signed intersection number.

$$\int \frac{4d^2z}{(1+|z|^2)^2} X(\gamma_{\alpha}^{-1}(z,\bar{z})) Y_{2,1}^*(z,\bar{z}) = 0$$

$$\int \frac{4d^2z}{(1+|z|^2)^2} X(\gamma_{\alpha}^{-1}(z,\bar{z})) Y_{2,1}^*(z,\bar{z}) = 0$$

• Given any configuration X, can we choose a Gauge transformation to reach the gauge fixing surface?

 $X(z) \to X(\gamma_{\alpha}^{-1}(z))$ and then Project onto modes

$$\int \frac{4d^2z}{(1+|z|^2)^2} X(\gamma_{\alpha}^{-1}(z,\bar{z})) Y_{2,1}^*(z,\bar{z}) = 0$$

• The signed intersection number is related to Winding number, which is -1

• After the dust settles, we have

$$-\int \frac{\pi d^2 \alpha}{(1-|\alpha|^2)^2} \operatorname{Jac}(\operatorname{Det}(\operatorname{Gauge})) \delta(F^{\alpha}(x)) = 1$$

Inserting Signed FP determinant

$$-\int \frac{\pi d^2 \alpha}{(1-|\alpha|^2)^2} \operatorname{Jac}(\operatorname{Det}(\operatorname{Gauge})) \delta(F^{\alpha}(x)) = 1$$

• Without Gauge fixing, CFT path integral is nothing but the Gaussian integral over $X_{\ell,m}$

• Two mode integral gets omitted due to delta function and Jacobian introduces a polynomial of finite number of modes.

$$\pi J_{D}(X) = \frac{64}{7} \left[\left(\operatorname{Im} X_{3,2} \right)^{2} + \left(\operatorname{Re} X_{3,2} \right)^{2} \right] - \frac{16}{5} \sqrt{\frac{3}{7}} X_{1,0} X_{3,0} - \frac{2}{5} \left(X_{1,0} \right)^{2} - \frac{96}{35} \left(X_{3,0} \right)^{2}$$

Disk Partition function

$$Z_{
m Disk} = rac{Z_{
m CFT}}{-\pi^2/2}$$

• We have two more different methods to arrive at the same result.

• In all cases, D-Brane tension can be found using $e^{-T_p \text{Vol}(D_p)} = e^{Z_{\text{Disk}}}$

Open Problem-Sphere partition function

• The idea of Gauge fixing by considering the spherical harmonic modes apparently fails for the sphere partition function. Is there any first principle calculation?

• Can we compute the sphere partition function with AdS_3 target space and reproduce the boundary conformal anomaly? (w.i.p with L.Eberhardt and R.Mahajan)

THANK YOU