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Why?

* Lower genus String partition functions are confusing and intiguing at the same
time.

Naive|9 it seems to vanish On-shell gravitg action
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Unpacking the confusing element:

* Let us consider critical string (Bosonic)
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* We assume existence of one flat direction.
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Unpacking the confusing element:

* We fix the conformal gauge.

* 'There is a combination of Weyl invariance and Difteomorphism, which remains

unfixed.

* For sphere, we have PSL (2,C) while for the Disk we have PSL(2,R)

* For three or higher point function, we use the gauge redundancy to fix
the position of three vertex operators.

* Naively this implies that the lower point function vanishes.



Unpacking the confusing element:
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* 'Two point String amplitude is non vanishing. [H.Erbin,].Maldacena, D. Skliros]

We will focus on Zero point (DISK) case!




Gauge redundancy in Disk:
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Apparent volume of PSL(2,R):

PSL(2,R) = SL(2, R)/Z [Z Z] al? — [bf2 =
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Apparent volume of PSL(2,R):

PSL(2,R) =

* Volume
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Regularized volume of PSL(2,R):

* Volume 27 / dx cosh x sinh
0 .

| Subtract off the DIVERGENCE  ILiu. Plchinsi 19591
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Regularized volume of PSL(2,R):
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* GOAL: Obtain the above doing honest QF'T calculation.




Gauge Fixing- Faddeev Popov

* Proceeds via choosing a gauge condition and inserting the following
| = /dg A(XNS(F(X9))

* Key Assumption: Gauge orbit intersects the Gauge fixing surface once and
only once.
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Gauge Fixing- Toy Example

T I ) = e

* Take Home Lesson: One can get rid of absolute value of Jacobian under suitable
condition.



Gauge Fixing-PSL(2,R)

ds? = 02 Choose the upper hemisph '
S = ° 00s¢€ the upper hemisphere metric
(1 + 127" o
X = Z X, Yy * Expand in appropriate spherical Harmonics consistent
0 m with boundary condition

1 =20 Gauge fixing condition For Dirichlet

X141 =0 Gauge fixing condition For Neumann




Gauge Fixing-PSL(2,R)

X911 =20 Gauge fixing condition For Dirichlet

X141 =0 Gauge fixing condition For Neumann

1 1 o * Takes away from the Gauge fixing surface.
Yo = _ . .. .
Vi—ao2 |a 1 Remaining U(1) preserves it.

* Next GOAL: to find the signed intersection number.
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Gauge Fixing-PSL(2,R)
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* Given any configuration X, can we choose a Gauge transformation to reach the

oauge fixing surface?

X(2) = X (v;(2)) and then Project onto modes



Gauge Fixing-PSL(2,R)
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* 'The signed intersection number is related to Winding number, which is -1

* After the dust settles, we have
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Inserting Signed FP determinant
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* Without Gauge fixing, CF'T path integral is nothing but the Gaussian integral over
Xé,m

* Two mode integral gets omitted due to delta function and
Jacobian introduces a polynomial of finite number of modes.
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Disk Partition function

* We have two more different methods to arrive at the same result.

* In all cases, D-Brane tension can be found using e~ TpVol(Dyp) _ ,ZDisk



Open Problem-Sphere partition function

* 'The idea of Gauge fixing by considering the spherical harmonic modes apparently

fails for the sphere partition function. Is there any first principle calculation ?

* Can we compute the sphere partition function with AdS_3 target space
and reproduce the boundary conformal anomaly ? (w.i.p with L.Eberhardt and R.Mahajan)

THANK YOU



