AdS/CFT to all loop orders

Bob Knighton

Institut für Theoretische Physik, ETH Zürich Kavli Intitute for Theoretical Physics, UC Santa Barbara

Based on arXiv:2009.11306 and arXiv:2012.01445

A cartoon picture of AdS/CFT

CFT correlators on the boundary

⇐⇒

Worldsheet correlators in the bulk

AdS:

Observables in string theory are organized as a sum over the genus of the worldsheet:

$$
\sum_{\text{genus}} g_s^{2g-2} \int_{\mathcal{M}_{g,n}} \mathcal{O}_{\text{string},g}
$$

CFT

Observables in CFTs also admit a genus expansion in terms of the genus of Feynman graphs:

$$
\sum_{\text{genus}} N^{2-2g} \mathcal{O}_{\text{CFT},g}
$$

The AdS/CFT correspondence should hold at all orders in this genus expansion with $g_s \sim 1/N$

Possibly tractable regimes:

- $\ell_{\text{string}} \ll L_{\text{AdS}}$: SUGRA approximation, dual CFT strongly coupled
- $\ell_{\text{string}} \gg L_{\text{AdS}}$: spacetime is no longer geometric, dual CFT weakly coupled

Most AdS/CFT calculations are done in the SUGRA (large tension) regime, where string theory reduces to (semiclassical) QFT

However, the opposite (tensionless) regime has its advantages:

free dual $CFT \implies$ free worldsheet theory?

One specific example realises this idea fully:

- Lower-dimensional analogue of the free limit of AdS_5/CFT_4
- Spectra and correlation functions of both sides can be shown to agree [Eberhardt, Gaberdiel, Gopakumar, '18], [Eberhardt, Gaberdiel, Gopakumar, '19]

This talk: argue a simple geometric picture relating the two sides of this duality

Given a conformal field theory X , we can consider the theory

 $\mathsf{Sym}^N(X) = (X \otimes \cdots \otimes X)/S_N$

Coordinate fields are labelled by Φ_i , and we have the identification $\{\Phi_1, \ldots, \Phi_N\} \sim \{\Phi_{\pi(1)}, \ldots, \Phi_{\pi(N)}\}$

Concretely if X is a sigma-model on M , Sym $^{N}(X)$ is a sigma-model on Sym $^{N}(\mathcal{M})$

States in Sym $^{N}(X)$ are of the form $\mathcal{O}_{[\pi]}$ where $[\pi]$ is a conjugacy class in S_N

We will focus on conjugacy classes of *single-cycle* permutations $(1 \dots w)$, which form the w-twisted sector

The states \mathcal{O}_w are analogous to single-trace operators in gauge theory, and correspond to single-string states in AdS

Correlators in the symmetric product CFT

Correlation functions in $Sym^N(X)$ can be expressed as correlation functions of X on covering spaces [Lunin, Mathur, '00]

$$
\langle \mathcal{O}_1^{w_1}(x_1)\cdots \mathcal{O}_n^{w_n}(x_n)\rangle_{\mathsf{S}^2} = \sum_{\Gamma:\Sigma\to\mathsf{S}^2} C_{\Gamma} \langle \mathcal{O}_1(z_1)\cdots \mathcal{O}_n(z_n)\rangle_{\Sigma}
$$

The covering map Γ has to satisfy

$$
\Gamma(z) \sim x_i + \mathcal{O}((z - z_i)^{w_i}), \quad z \to z_i
$$

The sum runs over all coverings of S^2 with appropriate branching \implies a genus expansion for the symmetric product CFT!

Razamat, 2009]

$\sum_{\Gamma:\Sigma\to S^2} C_{\Gamma} \langle \mathcal{O}_1(z_1)\cdots \mathcal{O}_n(z_n) \rangle_{\Sigma} = \underbrace{\sum_{g} g_s^{2g-2} \int_{\mathcal{M}_{g,n}} \langle V^{w_1}(x_1,z_1)\cdots V^{w_n}(x_n,z_n) \rangle}_{\text{symmetric product CFT}}$	
$\sum_{\text{symmetric product}} \text{product CFT}$	$\text{AdS}_3 \text{ string theory}$
$\sum_{\text{symmetric product}} \text{product CFT}$	$\text{AdS}_3 \text{ string theory}$
$\sum_{\text{string theory}} \text{corrected to a sum over surfaces,}$	$\Gamma_4 \bullet$
$\Gamma_5 \bullet$	$\Gamma_2 \bullet$
$\Gamma_3 \bullet$	$\Gamma_2 \bullet$
$\Gamma_4 \bullet$	$\Gamma_5 \bullet$
$\Gamma_6 \bullet$	$\Gamma_7 \bullet$
$\Gamma_8 \bullet$	$\Gamma_9 \bullet$
$\Gamma_8 \bullet$	$\Gamma_9 \bullet$
$\Gamma_9 \bullet$	$\Gamma_8 \bullet$
$\Gamma_9 \bullet$	$\Gamma_1 \bullet$

A localisation principle

Figure adapted from [Eberhardt, Gaberdiel, Gopakumar, 2019]

The 'tensionless' string on $\mathsf{AdS}_3\times \mathsf{S}^3\times \mathsf{T}^4$ is based on the supergroup WZW model $\mathfrak{psu}(1,1|2)_k \oplus \mathbb{T}^4$ at level $k=1$

This model admits a description in terms of free-fields

$$
\mathfrak{psu}(1,1|2)_1 = \left(\begin{array}{c|c} \mathfrak{sl}(2,\mathbb{R})_1 & \text{supercharges} \\ \hline \text{supercharges} & \mathfrak{su}(2)_1 \end{array}\right) = \left(\begin{array}{c|c} \xi\eta & \xi\chi \\ \hline \eta\psi & \psi\chi \end{array}\right)
$$
\n
$$
\underbrace{\xi^{\pm}}_{\text{spin-}\frac{1}{2} \text{ bosons}}, \quad \underbrace{\psi^{\pm}}_{\text{spin-}\frac{1}{2} \text{ fermions}}
$$

States in the theory are descendents of 'spectrally flowed' states

$$
V_h^w(x,z)\otimes \mathcal{O}_{\mathsf{T}^4}(z)
$$

We are, in the end, interested in the correlators

$$
\Bigl\langle \prod_{i=1}^n V_{h_i}^{w_i}(x_i,z_i) \Bigr\rangle
$$

Define the spin- $1/2$ functions on Σ :

$$
\omega^{\pm}(z) = \left\langle \xi^{\pm}(z) \prod_{i=1}^{n} V_{h_i}^{w_i}(x_i, z_i) \right\rangle_{\text{phys.}}
$$

By the OPEs between ξ^{\pm} and V_h^w , we know

- ω^{\pm} both have poles of order $\frac{w_i+1}{2}$ at $z=z_i$
- The combinations $\omega^- + x_i \, \omega^+$ have zeroes of order $\frac{w_i-1}{2}$ at $z=z_i$
- \bullet (non-trivial) ω^+ and ω^- have $n+2g-2$ shared zeroes

This turns out to be enough to completely constrain the forms of ω^{\pm} , and the function

$$
\Gamma(z) = -\frac{\omega^-(z)}{\omega^+(z)}
$$

satisfies *exactly* the properties of the covering map $\Gamma: \Sigma \rightarrow \mathsf{S}^2$ used in the symmetric orbifold

If such a covering map does not exist, correlation functions vanish \implies localisation! With a little more effort, one can show the h_i dependence also matches the symmetric orbifold answer

Summary:

- Symmetric orbifold correlators can be 'geometrised' in terms of covering spaces $\Gamma: \Sigma \to \mathsf{S}^2$
- Tensionless string correlators define functions ω^{\pm} such that $\Gamma = -\omega^-/\omega^+$ is the covering map
- This implies that string theory amplitudes localise on $\mathcal{M}_{q,n}$

Future directions:

- Tensionless AdS_3 admits a natural generalisation to AdS_5 [Gaberdiel, Gopakumar, 2021]
	- Use similar geometric picture to compute correlation functions in AdS₅/CFT₄ [Gaberdiel, Gopakumar, BK, Maity, work in progress]
- One can study the effects of D-branes on this duality [Gaberdiel, BK, Vošmera, work in progress]
	- Similar localisation: correlators in the presence of D-branes \implies covering maps between surfaces with boundaries

Thank you for your attention