
TTreeIterator
an STL-friendly TTree API

Tim Adye
Rutherford Appleton Laboratory

ROOT Parallelism, Performance and
Programming Model Meeting

27th May 2021

Outline

• Critique of existing TTree read access methods

1. SetBranchAddress

2. TTreeReader

• will not discuss RDataFrame (or TTree::Draw)

• I have no complaints!

• I personally prefer functional-style code, and RDataFrame is the way to go

• however I still think there is a place where a loop-over-entries can be more convenient, eg.

a. filling histograms with information computed from many columns

b. transforming entries into another format

c. for users more familiar with loops

• TTreeIterator

• just a personal project, exploring some ideas to improve TTree reading/filling

• Developed in a branch of another development project (RooFitTrees)

• works well, but currently undocumented and in need of code cleanup

• I hope maybe some of the ideas can be useful more widely, even if not adopted wholesale

3. API choices

4. interesting aspects of the C++11 implementation

5. Performance measurements

6. optimisation… optimisation… optimisation

Tim Adye - RAL TTreeIterator 2

https://gitlab.cern.ch/will/roofittrees/-/tree/tim/

Traditional way to read an n-tuple

Tim Adye - RAL TTreeIterator 3

• Loop over entries, like this:

• This example just fills histograms
hxy and hz, which would be easier done with
tree->Draw()

• a real application of an event loop would
perform calculations on many variables and
fill histograms with derived quantities

TTree* tree= file.Get<TTree>("xyz");

double vx, vy, vz;
tree->SetBranchAddress("vx",&vx);
tree->SetBranchAddress("vy",&vx);
tree->SetBranchAddress("vz",&vz);

Long64_t n = tree->GetEntries();
for (Long64_t i=0; i<n; i++) {
tree->GetEntry(i);
hxy.Fill (vx, vy);
hz .Fill (vz);

}

tree->ResetBranchAddresses();
delete tree;

spooky action
at a distance,
“side effects”

• The use of SetBranchAddress is
cumbersome, fragile, and error-prone,
eg.

• likely segfault if we access the tree
again in another routine without
ResetBranchAddresses

• need *value, but **object

• errors can easily go unnoticed

• eg. did you spot the error?
Will silently use the wrong values for
vx and vy.

• Each variable specified 3 times

• This mistake happens more often
when variable definition and branch
association is separated from use

• amount of boiler-plate scales with
the number of (10-100s) variables

• trouble sharing variables with
functions called inside loop

• C-style, not C++

• TTreeReader is a more C++ish alternative

• (can also use an iterator, but dereferencing
the iterator doesn’t do anything useful.)

• Unfortunately I have yet to see TTreeReader
used in physics code

• always one of TTree::Draw,
SetBranchAddress, or more recently
RDataFrame

• perhaps TTreeReader needs better
advertisement

• brief mention in ROOT user manual

TTreeReader tree("xyz", &file);
TTreeReaderValue<double> vx (tree, "vx");
TTreeReaderValue<double> vy (tree, "vx");
TTreeReaderValue<double> vz (tree, "vz");

while (tree.Next()) {
hxy.Fill (*vx, *vy);
hz .Fill (*vz);

}

• Still some of the same problems with
TTreeReader, just less so

• Harder to make a mistake, but…

• eg. this error will silently use the
wrong values for vy.

• Each variable now specified 2 times

• The variable definition and branch
association is still separated from use

• amount of boiler-plate scales with
the number of variables

• sharing variables with functions
called inside loop even harder

• can’t make vx, vy, vz global
variables

• C++98 style

TTreeReader is much better

Tim Adye - RAL TTreeIterator 4

side effects at
least more clearly
visible

PyROOT
• TTreeIterator is inspired by PyROOT’s iterator

interface for TTrees

• Implemented an interface, a bit like
std::vector< std::map< std::string > > >

• C++ requires types and methods to be defined at compile-time,
so it’s a little more complicated.

• Improved error checking

• compile-time check for ambiguous or incompatible type
• eg. 2D Fill can take other than just doubles, so need to specify explicitly – or load into a

local variable

• run-time check for missing branch or wrong type
• gives error message and returns NaN (or user-specified value) – maybe better to throw

exception

TTreeIterator – another way to read a TTree

Tim Adye - RAL TTreeIterator 5

TTreeIterator tree("xyz", &file);
for (auto& entry : tree) {
hxy.Fill (entry.Get<double>("vx"),

entry.Get<double>("vy"));
hz .Fill (entry["vz"]);

}

tree = file.Get("xyz")
for entry in tree:

hxy.Fill (entry.vx, entry.vy)
hz .Fill (entry.vz)

TTree "xyz" read from file file (default=current file) – like TTreeReader

Range-for loop
over all entries
in the tree

Values to read defined
only once, when needed
(no visible side-effects)

If type is unambiguously
known from context,
can use map-style syntax

TTreeIterator features

• TTreeIterator works with any data type that can be saved in a TTree, eg.

• std::vector, std::string, eg.

• TObjects like TH1D, TRandom, TUUID, eg.

• C-style struct, eg.

• Can be used in combination with the other access techniques, eg.

• TTree created or read from file by the user

• traditional for loop + tree.GetEntry(i)

• SetBranchAddress for same or different variables

Tim Adye - RAL TTreeIterator 6

struct MyStruct {
double x[3];
int i;

};
const MyStruct& M = entry["M"];
double z = M.x[2];

const std::vector<double>& vec = entry["vec"];
const std::string& str = entry["str"];

const TH1D& hist = entry["hist"];

Accessing data values

• Here are some example accesses:

• the map-style accessor can be used as long as the type can be determined
unambiguously at compile-time

• Get<double>("x") can always be used to specify type explicitly

• would it be better to always do this?

• here we access the doubles by value, but the vector and string by reference

• this is more efficient for the larger types, but both styles work

Tim Adye - RAL TTreeIterator 7

auto x = entry.Get<double>("x");
double y = entry[“y“];
const std::vector<double>& vec = entry["vec"];
const std::string& str = entry["str"];

STL algorithms

• TTreeIterator::iterator conforms to the iterator requirements

• it can be used in STL algorithms, eg.

• or

• This type of access is more suited to RDataFrame, so I haven’t pursued it further

• I don’t know if this would work with STL algorithms’ parallel execution

• likely problems with shared access to underlying tree

Tim Adye - RAL TTreeIterator 8

auto sum = std::accumulate (tree.begin(), tree.end(), 0.0,
[](double s, const TTreeIterator& entry) {

return s + entry.Get<double>("x");
});

std::vector<double> vx;
std::transform (tree.begin(), tree.end(), std::back_inserter(vx),

[](const TTreeIterator& entry) -> double { return entry["x"]; });

Filling with TTreeIterator

Tim Adye - RAL TTreeIterator 9

• TTreeIterator can also be used to fill a TTree, eg.

• No “TTreeWriter” to improve over TTree::Branch()

• Advantages of TTreeIterator even clearer for filling

• Branches created when first set

• automatic catch-up if not defined on first iteration

• fills unset values with NaN (or user-defined value), not the last-set value

• No calls to Fill() and Write() required

• May be better to leave Fill() to user, so can skip entry with continue

• Outside of simple examples like this, range for-loop may be less useful

• When filling in a loop over input data, use auto ientry=tree.FillEntries() and
explicit ientry->Fill()

• would it help to use a std::back_inserter-style model for filling?

TTreeIterator tree("xyz", &file);
for (auto& entry : tree.FillEntries(10000)) {
entry["vx"] = gRandom->Gaus(2,3);
entry["vy"] = gRandom->Gaus(-1,2);
entry["vz"] = gRandom->Gaus(0,100);

}

Data types with Fill

• Data type can usually be inferred when setting value, so simple map-style syntax is
usually sufficient here

• Checks for incompatible types at run-time (eg. when appending to an existing tree)

• Filling also works for all types, eg.

• C-style struct leaf types can be defined when set or, more conveniently, at
compile-time in the struct, eg.

Tim Adye - RAL TTreeIterator 10

struct MyStruct {
double x[3];
int i;
constexpr static const char* leaflist = "x[3]/D:i/I";

};
entry["M"] = MyStruct{1.0, 2.3, 4.9, 6};

entry["str"] = std::string("value");

Implementation details: std::any

• For our example accesses:

• internally, TTreeIterator keeps a cache of each value, keyed on
• std::pair(branch_name, data_type)

• on first use, calls SetBranchAddress with the address of the cached value stored
in an std::any-like object

• std::any is a convenient C++ standard way to perform type-erasure

• works for basic or complex types

• for small types (like double), doesn’t require an extra new

• unfortunately, std::any was only added in C++17

• fortunately it as a header-only library in GCC, so I

• borrowed the implementation

• tidied up the code – doesn’t need to conform to STL internals

• renamed it to Cpp11::Any so it doesn’t clash

• found some optimisations, so I use this version by default even in C++17

• my optimisations might benefit the GCC/Clang STL – should I try to feed them back?

Tim Adye - RAL TTreeIterator 11

for (auto& entry : tree) {
auto x = entry.Get<double>("x");
double y = entry[“y“];
const std::vector<double>& vec = entry["vec"];
const std::string& str = entry["str"];

}

Implementation details: type deduction

• For our example accesses:

• The type of entry["name"] has to be determined at compile time

• implemented like this:

• all these shenanigans can be optimised away by the compiler

• the use of the operator const T&() const is the magic here that simulates
overloading on the return type

• I haven’t seen much discussion on this method, but it works nicely in many cases

• need to specify type explicitly (double(entry["x“]) or entry.Get<double>("x")) if used
in expressions or with overloaded function calls

• flagged at compilation, so not a source of error

• Could be improved. Or is this map-style access feature worth the complication?

Tim Adye - RAL TTreeIterator 12

double y = entry[“y“];
const std::vector<double>& vec = entry["vec"];
const std::string& str = entry["str"];

Getter operator[] (const char* name) const { return Getter(*this,name); }

struct Getter {
Getter(const TTreeIterator& entry, const char* name) : fEntry(entry), fName(name) {}
template <typename T> operator const T&() const { return fEntry.Get<T>(fName); }

const TTreeIterator& fEntry;
const char* fName;

};

Performance measurements

Tim Adye - RAL TTreeIterator 13

• Each test sums 100 doubles in 500,000 entries

• Each test repeated 10 times for ~0.5ns uncertainty on average

• Run on empty Xeon E5-2620v4 2.1GHz (8 cores, HT)

• CentOS 7.9.2009, ROOT 6.24/00, GCC 10.1.0, C++17

data types
accessed

access method
or optimisation

Optimisation

• Concentrated on speed of access to doubles

• each double in its own branch

• using separate branches is very common, but slow

• Optimisation options:

1. “map”: TTreeIterator initially used a std::map to lookup
in the branch cache (returning a BranchInfo object)

2. “map+vector”: implements and ordered map so the search can try first the next
element

• most element accesses are in the same order in each entry

3. “vector”: keep all BranchInfo objects in a single vector to allow fast traversal

• this is much slower for out-of-order accesses, but can use a map if first look fails

• to be implemented

• std::vector can move the vector’s data as new elements are added

• TTreeIterator checks for a move and reissues SetBranchAddress if needed

• this only happens as new values are accessed, so doesn’t significantly affect speed

4. “std::any opt”: enable optimisations implemented in Cpp11::Any

5. “no checks”: disables some frequent checks

• eg. that user didn’t call SetBranchAddress herself, so TTreeIterator doesn’t interfere

• this doesn’t slow down access much, so the default is 4: “std::any opt”

Tim Adye - RAL TTreeIterator 14

Is this useful with PyROOT?

• PyROOT can’t easily call TTreeIterator directly

• would have to specify data type for template argument

• PyROOT’s TTree access can use type at run-time

• PyROOT’s TTree access is notoriously slow

• can we use some similar techniques to optimise

• I tried to optimise PyROOT’s TTree access along these lines many years ago

• large speed-up, but that was for an old version of PyROOT

• perhaps could still work

• can save the cached access in a closure attached to Python method

Tim Adye - RAL TTreeIterator 15

https://root-forum.cern.ch/t/iteration-over-a-tree-in-pyroot-performance-issue/12264/5

Other ideas

• Would it help to use a std::back_inserter-style model for filling?

• Optionally, throw exception on run-time check for missing branch or wrong type?

• Would be nice to allow different Fill strategies

• call Fill() automatically, or

• if user does it, can continue to skip entry

• Various options to improve entry["var"] automatic type deduction

• define simple operators, + – * /

• can we assume double if ambiguous?

• automatic run-time type conversion for some pre-defined types

• first access with that type could activate (and cache) type conversion function if type doesn’t
match branch type

• eg. float → double, double → int

• or is it best not to use this access mode and always specify the type explicitly

Tim Adye - RAL TTreeIterator 16

What next?

• I wanted to discuss with you whether and how it might be useful to take this forward

• Enrico has told me that the ROOT team (quite reasonably) does not want to add
another API

• perhaps some of the ideas I discussed are still useful

• eg. parts of it merged into TTreeReader or RNTuple

• Otherwise, I can release this in a package of its own

• header-only, so easy to install

• code would need some cleanup

• eg. remove #ifdef code for different benchmark options

• needs documentation!

• Currently part of another project, here:

• https://gitlab.cern.ch/will/roofittrees/-/blob/tim/RooFitTrees/RooFitTrees/TTreeIterator.h

• with implementation here:
https://gitlab.cern.ch/will/roofittrees/-/tree/tim/RooFitTrees/RooFitTrees/detail/

Tim Adye - RAL TTreeIterator 17

https://gitlab.cern.ch/will/roofittrees/-/blob/tim/RooFitTrees/RooFitTrees/TTreeIterator.h
https://gitlab.cern.ch/will/roofittrees/-/tree/tim/RooFitTrees/RooFitTrees/detail/

Backup

Performance measurements – C++11 vs C++17

Tim Adye - RAL TTreeIterator 19

• Each test sums 100 doubles in 500,000 entries

• Each test repeated ~10 times for ~0.5ns uncertainty on average

• Run on empty Xeon E5-2620v4 2.1GHz (8 cores, HT)

• CentOS 7.9.2009, ROOT 6.22

access method
or optimisation

	TTreeIterator�an STL-friendly TTree API
	Outline
	Traditional way to read an n-tuple
	TTreeReader is much better
	TTreeIterator – another way to read a TTree
	TTreeIterator features
	Accessing data values
	STL algorithms
	Filling with TTreeIterator
	Data types with Fill
	Implementation details: std::any
	Implementation details: type deduction
	Performance measurements
	Optimisation
	Is this useful with PyROOT?
	Other ideas
	What next?
	Backup
	Performance measurements – C++11 vs C++17

