Leptoquarks: 7 The First Generation

R

R. Caputo

SUNY, Stony Brook

USLUO Meeting

October 30, 2010

On Behalf of the ATLAS Collaboration

- A Brief Introduction to Leptoquarks
- The ATLAS detector
- Backgrounds and Signal
- Results of a W Event Selection
- Shape Comparison for Event Selection
- Optimization
- Conclusions

- A Brief Introduction to Leptoquarks
- The ATLAS detector
- Backgrounds and Signal
- Results of a W Event
 Selection
- Shape Comparison for Event Selection
- Optimization
- Conclusions

A Brief Introduction

- SM provides no explanation of symmetry between quarks/leptons
- LQs are particles which carry both baryon and lepton number
 - Introduced in many SM extensions
 - quantum numbers vary with theory
 - Pair or single production, scalar or vector
- LQs in effective models must
 - have normalizable interactions
 - obey SM group symmetries
 - couple only to SM fermions and gauge bosons
 - conserve lepton/baryon numbers separately
- LQs decay into $\ell^{\pm}/\nu+q$
 - decay topology parameterized by branching fraction to charged leptons (β)[2]

Production Cross Sections

- Leptoquarks are bosons
 - spin-0 scalar
 - 2 couplings: *l*-q and v-q
 - spin-1 vector
 - 4 couplings: 2 with λ_G and κ_G (anomolous quadrupole moment and anomalous magnetic moment)
- Use NLO σ for scalar
 signal [3] and background
 normalizations
- Discuss scalar LQ pair production
 - LQ interaction relies only on SM α_s which depends LQ mass

Current Limits: HERA and the Tevatron

- HERA results
 - 1997: H1 and ZEUS observed excess at e+jet mass of 200 GeV (could be single LQ production)
 - ruled out by Tevatron
- Tevatron results
 - D0 limits [4]:
 - 218 GeV (expected), 216 GeV (observed) (β=0.01)
 - 273 GeV (expected), 284 GeV (observed) (β=0.5)
 - 297 GeV (expected), 299 GeV (observed) (β=1)
 - CDF limits [5]:
 - 126 GeV (β=0.01)
 - 205 GeV (β=0.5)
 - 236 GeV (β=1)

Search Model

- LQ pair production
- Not dependent on particular theoretical model
- Color charged so can be produced strongly
 - gg and t-channel process dominant at low LQ mass
 - s-channel dominant at high LQ mass

- A Brief Introduction to Leptoquarks
- The ATLAS detector
- Backgrounds and Signal
- Results of a W Event
 Selection
- Shape Comparison for Event Selection
- Optimization
- Conclusions

- Inner Detector/Tracking
 - Pixel, Silicon Strips, Transition Radiation Tracker
- Calorimeters
 - Electromagnetic
 - LAr Barrel and endcaps
 - Hadronic
 - Tile
 - LAr forward and endcaps
- Magnets
 - Toroid and Solenoid
- Muons
 - Monitored Dtift Tubes (MDT), Thin Gap Chambers (TGC), Cathode Strip Chambers (CSC), Resistive Plate Chambers (RPC)

[6]

- Inner Detector/Tracking
 - Pixel, Si Strips, Transition Radiation Tracker
 - − momentum resolution dependent on η and p_T (~5×10⁻⁴ p_T /GeV⊕0.01)
- Calorimeters
 - Electromagnetic
 - LAr Barrel and endcaps
 - Hadronic
 - Tile
 - LAr forward and endcaps
- Magnets
 - Toroid and Solenoid
- Muons
 - Monitored Dtift Tubes (MDT), Thin Gap Chambers (TGC), Cathode Strip Chambers (CSC), Resistive Plate Chambers (RPC)

- Inner Detector/Tracking
 - Pixel, Silicon Strips, Transition Radiation Tracker
- Calorimeters
 - Electromagnetic
 - LAr Barrel, End caps
 - relative energy resolution ~10%/V(E/GeV)
 - Hadronic
 - Tile, LAr forward and endcaps
 - relative energy resolution ~60%/V(E/GeV)
 +0.03
- Magnets
 - Toroid and Solenoid
- Muons
 - Monitored Dtift Tubes (MDT), Thin Gap Chambers (TGC), Cathode Strip Chambers (CSC), Resistive Plate Chambers (RPC)

- Inner Detector/Tracking
 - Pixel, Silicon Strips, Transition Radiation Tracker
- Calorimeters
 - Electromagnetic
 - LAr Barrel and endcaps
 - Hadronic
 - Tile
 - LAr forward and endcaps
- Magnets
 - Toroid Barrel (3.9 T), End cap (4.1 T)
 - Solenoid outside of ID (2T)
- Muons
 - Monitored Dtift Tubes (MDT), Thin Gap Chambers (TGC), Cathode Strip Chambers (CSC), Resistive Plate Chambers (RPC)

- Inner Detector/Tracking
 - Pixel, Silicon Strips, Transition Radiation Tracker
- Calorimeters
 - Electromagnetic
 - LAr Barrel and endcaps
 - Hadronic
 - Tile
 - LAr forward and endcaps
- Magnets
 - Toroid and Solenoid
- Muons
 - Monitored Drift Tubes (MDT), Thin Gap Chambers (TGC), Cathode Strip Chambers (CSC), Resistive Plate Chambers (RPC)
 - momentum resolution (~2%)

- Trigger and Data-Acquisition System
- interaction rate ~10⁹ Hz to 100 Hz for recording
- 3 online selection levels
 - level 1 (LVL1) based on reduced granularity from subset of detectors – information held in buffers for level 2
 - level 2 (LVL2) uses region-ofinterest (RoI) – position and momentum, selects from buffers
 - level 3 (Event Filter EF) employs offline algorithms adapted to online environment confirms LVL2

- A Brief Introduction to Leptoquarks
- The ATLAS detector
- Backgrounds and Signal
- Results of a W Event
 Selection
- Shape Comparison for Event Selection
- Optimization
- Conclusions

Backgrounds and Signal

	Approx. Cross Section [pb]
$W \rightarrow ev(\tau v) + N_{jets}$	10000
\overline{tt}	160
single top (ev)	8
diboson (WW/WZ)	27/3
$Z \rightarrow ee(\tau\tau) + N_{jets}$	1000
QCD	(data driven)
$LQ_1 \overline{LQ}_1 \rightarrow e \nu q q$ (250 GeV)	3.6
$LQ_1 \overline{LQ}_1 \rightarrow evqq$ (300 GeV)	1.2
$LQ_1 \overline{LQ}_1 \rightarrow evqq$ (350 GeV)	0.5
$LQ_1 \overline{LQ}_1 \rightarrow e \nu q q$ (400 GeV)	0.2

10/30/10

Base Event Selection: The Hunt

- Event Selection each decay product
 - at least 1 good primary vertex
 - Electrons
 - cluster $p_T > 20$ GeV, $|\eta| < 2.47$ with crack region removed
 - Cluster based with shape requirements and track matched
 - Jets (anti- k_T 4, EM scale, topo)
 - $p_T > 20 \text{ GeV}, |\eta| < 2.8$
 - Missing Transverse Energy
 - **Z**_T > 25 GeV
- Event Selection
 - 1 electron
 - no jet requirement for W
 Selection, ≥ 1 jet required for control region, ≥ 2 for analysis
 - $M_{T}(e, \mathbf{Z}_{T}) > 40 \text{ GeV}$

ATLAS work in progress

QCD Estimation: Matrix Method

loose sample w/low real electrons and high QCD

$$- N_{I} = N_{ele}^{real} + N_{QCD}^{tak}$$

tight sample w/high real electrons and low QCD

$$- N_{t} = \varepsilon_{ele}^{real} N_{ele}^{real} + \varepsilon_{QCD}^{fake} N_{QCD}^{fake}$$

- ϵ_{ele}^{real} prob that real electron is tight given loose
- ϵ_{QCD}^{fake} prob that fake electron is tight given loose
- Get ϵ 's from analysis, Solve for $\epsilon_{QCD}^{fake}N_{QCD}^{fake}$

QCD Estimation: Matrix Method

Methodology

Bin by Bin

 QCD normalization and shape comes from following:

-
$$N_{l}^{i} = N_{ele}^{real i} + N_{QCD}^{fake i}$$

- $N_t^i = \varepsilon_{ele}^{real} N_{ele}^{real i} + \varepsilon_{QCD}^{fake} N_{QCD}^{fake i}$
- fill ith bin

$$\varepsilon_{QCD}^{fake} N_{QCD}^{i} = \varepsilon_{QCD}^{fake} \frac{\varepsilon_{ele}^{real} N_{l}^{i} - N_{t}^{i}}{\varepsilon_{ele}^{real} - \varepsilon_{QCD}^{fake}}$$

Reverse Isolation

- shape from loose-tight
- shape comes from following: normalization from following:

$$\varepsilon_{QCD}^{fake} N_{QCD} = \varepsilon_{QCD}^{fake} \frac{\varepsilon_{ele}^{real} N_l - N_t}{\varepsilon_{ele}^{real} - \varepsilon_{QCD}^{fake}}$$

- depends on tight/loose definition
- ε_{QCD} ~ 15-20%
- ε_{ele} ~ 75%
 - from Z->ee+N_{jets} MC
 - data/MC correction factor ~1.0

- A Brief Introduction to Leptoquarks
- The ATLAS detector
- Backgrounds and Signal
- Results of a W Event Selection
- Shape Comparison for Event Selection
- Optimization
- Conclusions

Base Selection Predicted Yields

Sample	Pass Base Selection [%]	Approx Predicted Yields 3.1 pb ⁻¹
$W \rightarrow ev + N_{jets}$	8	1900
$W \rightarrow \tau \nu + N_{jets}$	0.15	35
$Z \rightarrow ee + N_{jets}$	4	13
$Z \rightarrow \tau \tau + N_{jets}$	0.14	5
diboson (WW/WZ)	11	7
ttbar (inc)	15	43
single top (ev)	48	14
QCD		175
Background Total		2200
$LQ_1 \overline{LQ}_1 \rightarrow e \nu q q$ (250 GeV)	48	6
$LQ_1 \overline{LQ}_1 \rightarrow e \nu q q$ (300 GeV)	55	2
$LQ_1 \overline{LQ_1} \rightarrow e \nu q q$ (350 GeV)	58	0.9

Comparison of W Monte Carlo with Data

R. Caputo, USLUO Meeting

- A Brief Introduction to Leptoquarks
- The ATLAS detector
- Backgrounds and Signal
- Results of a W Event
 Selection
- Shape Comparison for Event Selection
- Optimization
- Conclusions

Background and Signal Shape Comparison

Background and Signal Shape Comparison

- Use plots from control region with 1 jet requirement
- Shape of signal determines best variables to use for optimization
- M(e,j₁) shows clear peak separation, would benefit from background removal
- W dominant background -M_T removal of large W background

Other Event Variables: L_T , H_T , S_T

This gives an idea of which variables would be the best for optimization

 S_T gives very nice signal and background discrimination.

- A Brief Introduction to Leptoquarks
- The ATLAS detector
- Backgrounds and Signal
- Results of a W Event
 Selection
- Shape Comparison for Event Selection
- Optimization
- Conclusions

RGS Optimization

- Random Grid Search More cut options
 - N-Dimensional
- Each cut choice corresponds to the values in one of the signal events
 - Use every signal event
- Significance calculated and plotted
 - Matched to each cut
- Compared with simple 1D and 2D calculation
 - over 10% improvement over single variable method
 - allows cross check to not set cuts to an unstable point

 $Sig = \frac{S}{\sqrt{B} \oplus 0.1B}$

Optimization for a 250 GeV LQ

- Where do we have sensitivity?...
- Check near current limit: 250 GeV LQ pairs
 - (assume $\mathcal{L} = 20 \text{ pb}^{-1}$)
- 4D Grid based on cutting on the following variables:
 - \mathbb{E}_T , $M_T(e, \mathbb{E}_T)$, $M(jet_1, e)$, and S_T
- each point represents a set of cuts in the 4-D space

Optimization for a 300 GeV LQ

- Boldly going where no experiment has gone before.
- What is our sensitivity in a new region?...
- 300 GeV LQ sample signal first generation
 - (£ = 50 pb⁻¹)
- Same 4-D grid space
 - \mathbb{P}_{T} , $M_{T}(e,\mathbb{P}_{T})$, $M(jet_{1},e)$, and S_{T}

The peak:	М _т – 170 GeV
signal: 18	≱ ⊤- 85 GeV
background: 15	M(e,j ₁) – 225 GeV
significance: >4	S _T – 400 GeV

Results

Results

- All this was done with RGS optimization
 - Very loose preselection
 - Investigation of best 4 variables for cuts

Results

- Promising results using RGS method
 - > 4σ signal significance optimized with 300 GeV LQLQ production
- 95% C.L. limit from RGS method
- Assumes β=0.5
- Limits computed using modified Frequentist approach
- 11% total for systematics 100% correlated between background and signal

- A Brief Introduction to Leptoquarks
- The ATLAS detector
- Backgrounds and Signal
- Results of a W Event
 Selection
- Shape Comparison for Event Selection
- Optimization
- Conclusions

Conclusions

- Leptoquarks provide a robust set of searches for the new LHC era
- Early discovery potential high in electron+ Missing E_T + dijet channel
 - Discovery: for 300 GeV LQLQ production predicted
 > 4σ signal significance with L ~ 50 pb⁻¹
 Exclusion: Limit 95% C.L. LQLQ ~310 GeV

References

- [1] http://sbhep-nt.physics.sunysb.edu/HEP/ AcceleratorGroup/index.html
- [2] J. Pati and A. Salam, Phys. Rev. D10 (1974), 275
- [3] M. Kramer et al., Phys. Rev. D71, 057503 (2005)
- [4] <u>arXiv:0907.1048v2</u> [hep-ex]
- [5] <u>arXiv:hep-ex/0506074v1</u>
- [6] ATLAS TDR, <u>http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/</u> <u>TDR/access.html</u>
- [7] <u>arXiv:1004.5293v2</u> [physics.ins-det]