First results from ALICE

Christine Nattrass University of Tennessee at Knoxville

Exploring QCD at high temperatures

Simple expectations for heavy ion physics at the LHC

	SPS	RHIC	LHC	
$\sqrt{\mathrm{s_{_{NN}}}(\mathrm{GeV})}$	17	200	5500	28x
$dN_{ch}/d\eta$	~700	~1200	~2000-8000	2-7x
T/T _c	1.1	1.9	3.0-4.2	Hotter
ε (GeV/fm ³)	3	5	15-60	Denser
$ au_{QGP}$ (fm/c)	≤2	2-4	>10	Longer lived

Pb+Pb collisions

Results in p+p

Physics in p+p

- Collect reference data for heavy-ion program
 - Many signals in Pb+Pb measured relative to pp
 - Some require ~ 10⁹ minimum-bias events
- Comprehensive study of minimum bias events at the LHC
 - Testing and improvement of models
 - Particle production (low p_τ, particle identified data)

Results in p+p

Physics in p+p

- Collect reference data for heavy-ion program
 - Many signals in Pb+Pb measured relative to pp
 - Some require ~ 10⁹ minimum-bias events
- Comprehensive study of minimum bias events at the LHC
 - Testing and improvement of models
 - Particle production (low p₁, particle identified data)

Published results

 \Rightarrow N_{ch} multiplicity & distributions

⁰900 GeV:

○900 GeV, 2.36 TeV:

₽7 TeV:

- $\Rightarrow \overline{p}/p \text{ ratio } (900 \text{ GeV } \& 7 \text{ TeV})$
- ➡ Momentum distributions(900 GeV)
- ⇒ Bose-Einstein correlations (900 GeV) PRD: Vol. 82 (2010) 052001

EPJC: Vol. 65 (2010) 111 EPJC: Vol. 68 (2010) 89 EPJC: Vol. 68 (2010) 345

PRL: Vol. 105 (2010) 072002

V) PL B: Vol. 693 (2010) 53

Results in p+p

- Prepared for submission
- \Rightarrow Identified particles (π ,K,p)
- \Rightarrow Strangeness (K⁰, Λ , Ξ , ϕ)
- Ongoing analyses
- ⇒ 7 TeV pp spectra, HBT, identified particles, strangeness
 High multiplicity
- $\Rightarrow \pi^{0}$ and η transverse momentum spectra
- \Rightarrow Heavy flavour: charm (D⁰,D⁺, D*), c,b $\rightarrow \mu$, e⁻
- $\Rightarrow J/\psi \rightarrow \mu\mu, e^+e^-$
- ▷ pQCD: event topology, 2-particle correlations, jet fragmentation, ...

 $dN_{ch}/d\eta$ versus \sqrt{s}

Results:

increase with energy significantly stronger in data than MC's

- ALICE & CMS agree to within 1 σ (< 3%)

Monte Carlo scoreboard

	variable/tune	D6T	Perugia0	CSC	РНОЈЕТ
	$dN_{ch}^{}/d\eta$	-20%	-17%	+3%	-2%
>	N _{ch}				
Ŭ	\mathbf{p}_{T}				
006	<p_>0</p_>				
	$K^0_{S}, \Lambda, \overline{\Lambda}$				
	φ				

TeV	$dN_{_{ch}}\!/d\eta$	-24%	-21%	-2%	-8%
2.36	N _{ch}				

eV	$dN_{_{ch}}\!/d\eta$	-27%	-24%	-4%	-17%
77	N _{ch}				
			MC << Dat	a MC ≈ Data	MC >> Data

Multiplicity distributions

- Data from 900 GeV
- Substantial discrepancies between Monte Carlo and the data

Multiplicity distributions

- Data from 900 GeV, 2.36 TeV
- Substantial discrepancies between Monte Carlo and the data
- Agreement between ALICE & CMS

Multiplicity distributions

- Data from 900 GeV, 2.36 TeV, and 7 TeV
- Substantial discrepancies between Monte Carlo and the data
- Agreement between ALICE & CMS

Monte Carlo scoreboard

	variable/tune	D6T	Perugia0	CSC	РНОЈЕТ
	$dN_{_{ch}}\!/d\eta$	-20%	-17%	+3%	-2%
>	N _{ch}	N _{ch} >10	N _{ch} >5	N _{ch} >15	N _{ch} >10
Ğ	p _T				
006	<p_7></p_7>				
	$K^0_{S}, \Lambda, \overline{\Lambda}$				
	φ				

TeV	$dN_{_{ch}}\!/d\eta$	-24%	-21%	-2%	-8%
2.36	N _{ch}	N _{ch} >10	N _{ch} >5	N _{ch} >20	N _{ch} >15

eV	$dN_{_{ch}}\!/d\eta$	-27%	-24%	-4	%	-17%
	N _{ch}				N _{ch} >30	
			MC << Dat	a M	$\mathbf{C} \approx \mathbf{Data}$	MC >> Data

Momentum distributions at 900 GeV

\mathbf{p}_{T} distribution

Momentum distributions at 900 GeV

\mathbf{p}_{T} distribution

Momentum distributions at 900 GeV

Monte Carlo scoreboard

	variable/tune	D6T	Perugia0	CSC	РНОЈЕТ
	$dN_{ch}/d\eta$	-20%	-17%	+3%	-2%
>	N _{ch}	N _{ch} >10	N _{ch} >5	N _{ch} >15	N _{ch} >10
Ğ	p _T		$p_T > 4 \text{ GeV/c}$	$p_T > 1 \text{ GeV/c}$	$p_T > 1 \text{ GeV/c}$
900	<p_7></p_7>				
	$K^0_{\ S}, \Lambda, \ \overline{\Lambda}$				
	φ				

TeV	$dN_{_{ch}}\!/d\eta$	-24%	-21%	-2	2%	-8	%
2.36	$N_{_{ch}}$	N _{ch} >10	N _{ch} >	5	N _{ch} >20		N _{ch} >15

e<	$dN_{_{ch}}\!/d\eta$	-27%	-24%	-4	.%	-17%
7 1	N_{ch}				N _{ch} >30	
			MC << Dat	a M	C ≈ Data	MC >> Data

 $< p_T >$ versus multiplicity

• Substantial discrepancies between Monte Carlo and the data

Monte Carlo scoreboard

	variable/tune	D6T	Perugia0	CSC	РНОЈЕТ
	$dN_{_{ch}}\!/d\eta$	-20%	-17%	+3%	-2%
>	N _{ch}	N _{ch} >10	N _{ch} >5	N _{ch} >15	N _{ch} >10
Ğ	p _T		$p_T > 4 \text{ GeV/c}$	$p_T > 1 \text{ GeV/c}$	$p_T > 1 \text{ GeV/c}$
906	<p_></p_>				$p_T > 1 \text{ GeV/c}$
	$K^0_{S}, \Lambda, \overline{\Lambda}$				
	φ				

TeV	$dN_{_{ch}}\!/d\eta$	-24%	-21%	-2%	-8%
2.36	$N_{_{ch}}$	N _{ch} >10	N _{ch} >5	N _{ch} >20	N _{ch} >15

e	$dN_{ch}/d\eta$ -27%		-24%	-4	%	-17%	
7	N _{ch}				N _{ch} >30		
			MC << Dat	a M	$\mathbf{C} \approx \mathbf{Data}$	MC >> Data	

Christine Nattrass (UTK), US LHC User's Meeting, Oct. 29, 2010

p/p ratio

Monte Carlo scoreboard

	variable/tune D6T		Perugia0	CSC	PHOJET		
900 GeV	$dN_{ch}/d\eta$	-20%	-17%	+3%	-2%		
	N _{ch}	N _{ch} >10	N _{ch} >5	N _{ch} >15	N _{ch} >10		
	p _T		$p_T > 4 \text{ GeV/c}$	$p_T > 1 \text{ GeV/c}$	$p_T > 1 \text{ GeV/c}$		
	<p_7></p_7>				$p_T > 1 \text{ GeV/c}$		
	$K^0_{S}, \Lambda, \overline{\Lambda}$						
	φ						
e<	dN_/dŋ	dN /dη -24% -21%		-2%	-8%		

Te	$dN_{ch}/d\eta$ -24%		-21	-21%		-2%		-8%	
2.36	N _{ch}		N _{ch} >10		N _{ch} >5		N _{ch} >20		N _{ch} >15

eV	$dN_{ch}/d\eta$ -27%		-2	-24%		-4%			-17%		
77	N_{ch}						N _{ch} >30				
		MC <<<< [Data	MC << Data	a	MC	$C \approx Data$		MC >> Data		

Monte Carlo scoreboard

	variable/tune	D6T	Perugia0	CSC	PHOJET	
900 GeV	$dN_{_{ch}}\!/d\eta$	-20%	-17%	+3%	-2%	
	N _{ch}	N _{ch} >10	N _{ch} >5	N _{ch} >15	N _{ch} >10	
	p _T		$p_T > 4 \text{ GeV/c}$	$p_T > 1 \text{ GeV/c}$	$p_T > 1 \text{ GeV/c}$	
	<p_7></p_7>				$p_T > 1 \text{ GeV/c}$	
	$K^0_{s}, \Lambda, \overline{\Lambda}$					
	φ					
TeV	$dN_{ch}/d\eta$	-24%	-21%	-2%	-8%	
2.36	N _{ch}	N _{ch} >10	N _{ch} >5	N _{ch} >20	N _{ch} >15	
	dN /dn	270/	240/	10/	170/	
TeV		-2770	-24/0	-4 /0	-1 / /0	
2	N _{ch}			N _{ch} >30		
		MC <<<< [Data MC << Dat	a MC ≈ Data	MC >> Data	

Conclusion:

• None of the tested MC's (adjusted at lower energy) does really well

• Tuning one or two results is doable, getting everything right will require more effort (and may, with some luck, actually teach us something on soft QCD rather than only turning knobs).

Λ/K_0^{S} ratio at 900 GeV

- Very good agreement between STAR (200 GeV) and ALICE (900 GeV)
- Very different from CDF (630/1800) and UA1 (630) for $p_T > 1.5 \text{ GeV}$
- - UA1(630) and CDF(630) don't agree either ...
 - Different triggers, acceptance, feed-down correction?

More to come...

Christine Nattrass (UTK), US LHC User's Meeting, Oct. 29, 2010

Bose-Einstein correlations

QM enhancement of identical Bosons at small momentum difference:

• Enhancement of e.g. like-sign pions at low momentum difference $q_{inv} = |p_1 - p_2|$

→ Measure the space-time evolution of the dense matter formed in heavy-ion collisions.

→ Interpretation for "small systems" (p+p, e^++e^-) is less obvious...

Bose-Einstein correlations

D⁰ and D⁺ dN/dp_t

Christine Nattrass (UTK), US LHC User's Meeting, Oct. 29, 2010

J/ψ production at 7 TeV

very good agreement with LHCb pt spectra and cross section cross-section measurement in central–forward regions match

Electromagnetic calorimeter

- EMCal: -0.7 $<\eta < 0.7$, $80^{\circ} < \phi < 120^{\circ}$ in 2010 $\rightarrow 80^{\circ} < \phi < 180^{\circ}$ in January 2011 – Ahead of schedule!
- DCAL: -0.7 < η < 0.7, 260°< ϕ < 320° in 2013
- Access to di-jets, γ -jet, improve $\boldsymbol{p}_{_{\mathrm{T}}}$ reach of $\boldsymbol{e}^{\scriptscriptstyle\pm}$

Christine Nattrass (UTK), US LHC User's Meeting, Oct. 29, 2010

Conclusions

- Results from p+p collisions
 - Multiplicity, spectra
 - \overline{p}/p ratio
 - Identified particles
 - π.K,p
 - K^0_{s}, Λ
 - $\Xi, \Omega, \Sigma^*, K^*$
 - $D^{\pm}D^0 J/\psi$
 - Bose-Einstein correlations
- Improve our understanding of p+p collisions
 - Monte Carlos need improvement
- Eagerly awaiting Pb+Pb

Backup slides

The ALICE Collaboration

- ~1000 Members 63% from CERN member states
 - ~30 Countries
 - ~100 Institutes
 - ~150 MCHF capital cost (+magnet)

US ALICE

11 Institutions53 members (inc. 12 grad. Students) Cal. St. U. –San Luis Obispo, Creighton University, University of Houston, Lawrence Berkeley Nat. Lab, Lawrence Livermore Nat.
Lab, Oak Ridge Nat. Lab, Ohio State University, Purdue University, University of Tennessee, Wayne State University, Yale University

EMCal

Current coverage: $\Delta \eta = 1.4, \Delta \phi = 39^{\circ} (R \approx 0.3 \text{ max})$ Full calorimeter installation scheduled for 2012

- Lead-scintillator sampling calorimeter
- 13 k towers
- Each tower $\Delta \eta X \Delta \phi = 0.014 X 0.014$
- Shashlik geometry
- Avalanche phototodiodes
- Δη=1.4,Δφ=107°
- $\sigma(E)/E=0.12/\sqrt{E}+0.02$

ALICE detectors and acceptance

Central barrel- $0.9 < \eta < 0.9$

- $\Delta \phi = 2\pi$ tracking, PID (TPC/ITS/TRD/ToF)
- single arm RICH (HMPID)
- single arm e.m. cal (PHOS)
- jet calorimeter (EMCal)

Forward muon arm-2.4 $< \eta <$ -4

absorber, 3 T-m dipole magnet
 5 tracking + 2 trigger planes

Multiplicity detectors- $3.4 < \eta < 5$

including photon counting in PMD

Trigger & timing detectors

- 6 Zero Degree Calorimeters
- T0:ring of quartz window PMT's
- V0:ring of scintillator Paddles

Christine Nattrass (UTK), US LHC User's Meeting, Oct. 29, 2010

