Analysis Preservation & Open Data at LHCb

Ntuple Wizard and other efforts

Dillon Fitzgerald¹, **Adam Morris**², on behalf of the LHCb AP&OD group

¹University of Michigan, ²University of Bonn

3rd DPHEP Collaboration Workshop, 2021-06-21

Website: cern.ch/lhcb-dpa/wp6

Welcome to the Data Processing & Analysis (DPA) project

The Data Processing & Analysis, DPA, project addresses the challenges for offline data processing and analysis due to the very large increase in data volume with respect to Run II. DPA is built around 2 main ideas:

- Centralised skimming and trimming (aka Sprucing) of a significant fraction of HLT2 outputs.
- · Centralised analysis productions for physics WGs and users.

Overviews of the project Work Packages and offline processing flow are given below.

Work package	Coordinator(s)	Mailing list	Mattermost
Overall coordination	Eduardo Rodrigues		
WP1 - Sprucing	Nicole Skidmore	lhcb-dpa-wp1	link
WP2 - Analysis Productions	Chris Burr	lhcb-dpa-wp2	link
WP3 - Offline Analysis Tools	Patrick Koppenburg	lhcb-dpa-wp3	link
WP4 - Innovative Analysis Techniques	Donatella Lucchesi	lhcb-dpa-wp4	
WP5 - Legacy Software & Data	Alison Tully	lhcb-dpa-wp5	Stripping, DaVinci
WP6 - Analysis Preservation & Open Data	Sebastian Neubert	Ihcb-data-preservation	link

LHCb data processing in Run 1 (2011-2012)

- Data locations tracked with **Bookkeeping** system
- Stripping: build and select particle candidates, run centrally in periodic campaigns
 - Stripping line: specific candidate/selection requirement (c.f. trigger line)
- Analysis performed on ROOT **ntuples** derived from Stripping output
 - Created by running user-submitted jobs on the WLCG

User analysis jobs (old way)

Job ~ "process this file"

- X Slow interface with WLCG (DIRAC)
- X Manual rescheduling of failed jobs
- X Options & output in user storage
 - X Access depends on site availability
 - X Deleted when user leaves or needs to free up space
- X Testing manual and not enforced
 - 🗡 many failed user jobs

Analysis Productions (new way)

Production ~ "process this dataset"

- 🗸 Web-based monitoring
- ✓ Same production system as Simulation, Reconstruction, Stripping
 - 🗸 Jobs automatically (re)scheduled
- Preservation of job options
- ✓ Output stored centrally
- 🗸 Entry in Bookkeeping
- \checkmark Testing enforced before submission

From the LHCb Analysis Preservation Roadmap (2017):

Policy since December 2017: analysis code on GitLab, input ntuples on EOS

- Ongoing survey of current practices in the collaboration
 - How well is the current policy adopted?
 - How are workflows and environments being preserved now?
- Aim to make recommendations to LHCb management ~ end of year

Technical developments & vested interests:

- Snakemake workflow template repo
- Support for Snakemake in REANA (CERN IT summer intern)
- Streamlined analysis lifecycle management
 - Merge patchwork of systems
 - Interface with CAP
- Tag-based access to Analysis Production output

Dataset × Collision × Deriver	×E	LHCb ×
Include on-demand datasets	5	
Filter by type		
🛩 🛃 Dataset	4	
Collision	1	
Derived		3
Documentation	6	
Environment	1	
Software		1
Filter by experiment		
ALICE	15	
ATLAS	109	
CMS	1167	
🗹 LHCb	4	
OPERA	904	

Where is the LHCb Open Data?

Working on a release of the Run 1 Stripping output... Significantly larger filesizes than other LHC experiments! Not scalable: quickly hit storage quota on Open Data Portal.

Ntuple making currently requires knowledge of the LHCb software stack

- Lots of documentation and support required in order to be succesful
 - See LHCb Starterkit
- High barrier of entry for external analysts
- Complete overhaul of data processing (including ntupling) for Run 3
 - Knowledge required to access Run1+2 data will start fading "soon"

Ntuple Wizard

Mechanism for generation of ntuples without knowledge of the LHCb software stack

- Intuitive user inputs
- Produce necessary option files
- Create ntuples via Analysis Productions
- Return ntuples to user on the CERN Open Data Portal

This solves several problems:

- \checkmark Much smaller storage and bandwidth requirements on Open Data Portal
- ✓ Significantly flattened learning curve for accessing LHCb data
- \checkmark No need for a computing cluster just to download and process the data

Three core interactive components:

- Dataset and selection discovery
- Build selection algorithms
- Build ntupling algorithms

1.) Minimal working example with basic functionality

- Focus on "build ntupling algorithms" component
- Limited to selecting already-built decay candidates

2.) Develop extensions in parallel:

- Web application (summer student project)
 - Intuitive interface for algorithm configuration and input data selection
 - Display hints, examples and documentation
- Dataset discovery from more intuitive user inputs
- Configuration of further algorithms
 - selection sequences
 - mass hypothesis substitutions
 - custom jet reconstruction
 - etc...

GUI for demonstration purposes. **To be replaced with web application** Video recording

🥝 🗇 🕕 tk		
	Choose a data stream	
TharmCompleteEvent.dst		
	Choose a stripping line	
StrippingD2hhCompleteEventPromptDst2D2KKLine		
	Choose a decay descriptor	
D*(2010)+ -> (D0 -> K+ K-) pi+)		
Citabi Tugir tools Fruit Toolinemide Togir Toolonemide Tugir Toolanemity Tugir Toolanemity Tugir Toolanemity Tugir Toolanemity	D*(2010)+ D0 p+ k+ k	
Remove Tool		
Convigure Tool		Generate Options Files
Add Tool		

Considerations

Security & permissions

- ! DaVinci typically configured with python scripts
 - X **Running arbitrary code from outside is a bad idea**
 - Wizard saves configuration as data structures, to be interpreted by our parsers
- ! Dataset discovery requires metadata from Bookkeeping and LHCb stack
 - Pull all metadata at "deployment time"
 - Read static files at runtime, no interaction with DIRAC
- ! Locations of "unreleased" datasets easily guessable
 - Check input data against allowed list
- ! LHCb policy reserves right to withhold part of dataset (e.g. ongoing analysis)
 - Require fine-grained control over:
 - building/accessing decay candidates
 - Stripping lines or equivalent selections
 - No elegant/agreed solution yet

Limitations

- Aim to cover most common use-cases...
- ... but cannot offer 100% of available functionality
 - Security/access implications
 - Development time

- Ntuple making from user jobs to central production system
- Lots of parallel developments towards more complete analysis preservation
- Open Data release is a challenge (size and learning curve)
 - Ntuple wizard offers a scalable solution

Thank you for listening