

"Final Cooling" R&D requirements

David Neuffer Fermilab

Introduction

- "final cooling" ≅ any thing we add after baseline 6-D cooling channel to improve luminosity
 - Open ended research possibilities
- MAP baseline high field B_{z_1} low-E μ , low-f RF
 - Needs extensive study
- Other possibilities
 - Wedge emittance exchange
 - Li lens, plasma lens
 - PIC cooling
 - slice (x,y) and recombine (z-dE)
 - New ideans

- For high-energy collider, we want transverse emittance as small as possible
- Ionization cooling equations get you to $\varepsilon_t = 0.0002 \text{ m} (1984)$

$$\varepsilon_{N,eq} \cong \frac{\beta_t E_s^2}{2\beta m c^2 L_R (dE/ds)} \qquad \beta_t \cong \frac{2P_\mu (GeV/c)}{0.3B}$$

- Minimize ε_t by large B, small P_{μ}
 - B→ 30T +
 - P→ <100MeV/c</p>
 - LH₂₊ absorber

MAP Final Cooling R. Palmer, H. Sayed et al.

- 135m long
- Consists of 16 stages
- -130→110→90→70 MeV/c⁺
 - 62 MeV → 21 MeV
- –B: 25→30 T
- -Rf: 325 → 10 MHz
 - Some field flips
- But
 - Does not quit meet goals
 - Losses are too large
 - Needs improvement

Effort needed

- Simulation/design needed
 - 2 FTE/ yr ?
 - Verify/improve/replace MAP
- Engineering needed
 - Complete design of at least one segment
- Prototypes
 - Solenoid 30 T \rightarrow ?
 - RF segment ?

- Parametric resonance IC
 - Derbenev, Morozov
- Use Li lens for cooling
 - ε_{t,N} → <0.0001m
- Plasma lenses
- Optical stochastic cooling
 - First demonstration (2021, IOTA)
- Extend to higher B fields
 - RFOFO-D. Summers, T. Hart
- Phase space manipulations
 - Slice x and/or y, drift, recombine,
- Emittance Exchange
 - wedges

Final Cooling 6D before merg Phase Rotation 4a) 6D after merge Initial 3D Baseline 6D Merge Advanced Emit long (mm) 10² 8 ₽ Final 5a) 10.0 8 1.0 8 150 240 10^{3} 10.0 10^{2} 10^{4} Emit trans (micron)

Requires X? FTE for studies

Engineering, demonstrations?

Extend Rectilinear channel with 21T, 28, 35, 42 T

- $\epsilon_{t} \rightarrow 0.0001 \text{ m}, \epsilon_{L} \rightarrow 0.0008 \text{ m}$
- Cooler beam into "Final Cooler"

Longitudinal Cooling for Stages B8 - B12

Wedges for Final Cooling

- TeV Collider wants small ε
 - $\epsilon \rightarrow 25 \ \mu m \text{ or less}$
- Baseline final cooling is
 low.....

Mostly emittance exchange Consider

 Can do much of this with wedge absorbers ...

Wedge parameters

- Diamond, w=1.75mm, $\theta = 100^{\circ}(4.17\text{mm thick at center})$

Z(cm)	Pz	ε _x (μ)	ε _y	ε _L (mm	σ _E MeV	6-D ε increase	Pz vs. x Pz vs. x 0.11 Entries 999 0.11 Mean x 8.186e-006 Mean x 0.0241 0.105 RMS x 0.00163 RMS y 0.004939 0.1 Provide the second sec
0	100	97	95.5	1.27	0.46	1.0	0.095
0.4	96.4	33.4	96.3	4.55	1.64	1.24	0.085
0.8	92.4	22.7	96.5	8.94	3.22	1.65	0.075 Pz - x plot

- reduces ϵ_x by factor of 4.3, ϵ_L increases by factor of 7.0
 - first half of wedge more efficient than second half ...

Second wedge

- if rematched to same optics ($P_z \rightarrow 100 \text{ MeV/c}, \sigma_E \rightarrow 0.46 \text{ MeV}$)
 - $\epsilon_x: 23 \rightarrow 27\mu; \epsilon_y: 97 \rightarrow 23 \mu$

Wedge R&D

- Reduced emittance requires optical matching
 - X-amplitude becomes dispersion
 - Dispersion, β -functions + longitudinal
 - Quads, dipoles and solenoids
 - Part of general problem of optical transport at low energy
 - Mixing Quad, solenoid focusing
 - Include Round to Flat beam transfor
 - ~3 skew quads : ϵ_+ , $\epsilon_- \rightarrow -\epsilon_x$, ϵ_y
- 1-2 FTE ??
- Demonstration ?
 - ?100 MeV/c $\mu\text{-}$ beam, optics to demonstrate matching
 - Could be affordable ...

Emittance exchange: Slice and dice

Septum wire

RF

Deflecting

Cavity

separate transport

Final bunch

Coalescing

Cavity

- Slice beam transversely
- Drift separated beams
- Combine longitudinally
- Schemes with relatively large numbers of bunch Iwo-stage transverse split
 Splittings possible

Initial bunch

- D. Summers - "Potato slicer"

 $-16 \rightarrow 1$

- Could be done at higher energy ?
 - Overlap with LEMMA bunch combining ideas
- More generally
 - LEMMA phase space manipulations may also be useful for p-based source

Summary

- Final Cooling:
 - MAP Baseline system
 - Needs significant effort
 - Simulation, optics, B, rf
 - Other systems should be developed
 - Can be improved
- Alternatives for improvements should be explored
 - Inventions possible (X FTE)

Will be important research topic for IMCC