Demonstrator for Cooling Design Considerations

Science & Technology Facilities Council ISIS Neutron and Muon Source

C. T. Rogers ISIS Rutherford Appleton Laboratory

What should the facility demonstrate?

- Headlines
 - 6D cooling
 - Reacceleration
 - Cooling at low emittance (longitudinal and transverse)
- What do we need to do for CDR
 - Engineering integration
 - High-gradient RF cavity in magnetic field
 - Optics
 - High field magnets
 - Absorber infrastructure
 - Vacuum
 - Matching between different cooling cells
 - Diagnostics
 - Alignment and correction

Rectilinear B8 Lattice – as simulated

Wedge absorbers are modelled using a Lithium Hydride trapezium. Opening angle is 120° and height is 56 mm

RF windows thickness is between 20 micron. Adjacent cavities share the same window.

D. Stratakis et al, Rectilinear Six-Dimensional Ionization Cooling Channel for a Muon Collider: A theoretical and numerical study, PR ST AB 18 (2015)

Rectilinear B8 - Hardware

z1	dz	r1	dr	J
(m)	(m)	(m)	(m)	(A/mm^2)
0.023	0.12	0.045	0.065	220
0.063	0.08	0.14	0.08	135
0.1	0.10	0.25	0.12	153
0.606	0.10	0.25	0.12	-153
0.663	0.08	0.14	0.08	-135
0.663	0.12	0.045	0.065	-220

Table 1: Coil Dimensions

H. Witte et al, Magnet design for a Six-Dimensional Rectilinear Cooling Channel – Feasibility Study, Proc. IPAC2014

- RF cavity
 - 650 MHz, 28 MV/m, 105 mm long
 - TM010 cylindrical pillbox field is a Bessel function
- Magnet model
 - Modelled using 3 cylindrical current blocks and a polarity flip
 - In the model, slight tilt provides dipole field
 - May prefer trim coils

Engineering Integration

- Engineering integration
 - Note clash between the RF and the magnet
 - Cryogenic analysis was not done (but forces were)
 - Note also conflict between simulated bore and coil support
 - I guess insulating vacuum flask need to go around this?
- Challenge to bring services vacuum, RF
- Operate RF at IN₂ temperature?
 - Make the RF \rightarrow magnet interface easier?

High Gradient RF

- RF systems
 - Challenge to operate RF in high field magnet
 - Breakdown \rightarrow electrons stripped from surface
- Proof-of-principle operation using Beryllium-coated windows
 - Largely seems to suppress breakdown
- Experimental results for high pressure gas filled RF encouraging
 - Practical in an accelerator?
- New concept to pulse the RF power before spark has time to build (Sergey Arsenyev)
- Significant engineering overhead to do high pressure gas cell
 - Is it something we want to invest in?
 - Note pressure window dilutes cooling effect for short lattice
 - Instrumentation in the gas volume?
- RF windows how thick do they need to be? Radial profiling?

High-field magnets

0.96

0.94

0.92

0.9

0.88

0.86

0.84

0.82

0.8

350

350

300

250

200

150

100

0.4

- High-field magnets
 - Can we manage the forces (also during unbalanced quenches/etc)?
 - Can we deal with the cryogenics?
- Quench protection
 - Neighbouring magnets strongly coupled
 - If one magnet quenches do we quench the entire line? What about in muon collider (where "line" is ~ 3 km of magnets)
- (Radiation load)
 - MC will have a high radiation load needs care

Optics questions

- How tunable is the optics
 - Can we test in both stability regions?
 - Can we tune dispersion and β? How much?
 - Can we tune wedge opening angle? How much?
 - Can we use a dual sign lattice (like HFoFo)?

High-field magnets

Challenging!

Absorber Integration

Lattice	Material	Height	Opening and	gle	Vertex to beam axis	Base le	ength	Length on axis	Energy Loss on axis	dE	E/dl
		[mm]	[0]		[mm]	[mm]		[mm]	[MeV]	[M	leV/mm]
HFoFo	LiH		350	9.68	17	5	59.3	29.7	4.	7	1.90E-002
HFoFo	LiH		350	4.38	17	5	26.8	13.4	2.	1	1.22E-002
Rectilinear B8	LiH		56	120	1	1	193.98	38.1	. 6.	1	5.52E-001
HFoFo	LH2		350	9.68	17	5	59.3	29.7	0.1	9	3.47E-003
HFoFo	LH2		350	4.38	17	5	26.8	13.4	0.4	4	2.22E-003
Rectilinear B8	LH2		56	120	1	1	193.98	38.1	. 1.	1	1.01E-001
HFoFo	LH2	:	350	36	24	8	227.4	161.2	4.	7	1.89E-002
HFoFo	LH2	:	350	23.5	17	5	145.6	72.8	2.	1	1.21E-002
Rectilinear B8	LH2		56	168	1	1	1065.6	209.3	6.	1	5.53E-001
All subject to Develop and the batter films and the second sheet with the birds											

All subject to Rogers reading lattice files – need to cross check with tracking

LiH absorber baseline for Rectilinear B8 and HFoFo

- Relatively straight forward
- Test active cooling?
- Would be interesting to test LH2 absorber
 - For rectilinear require large (non-physical) opening angle
 - We care about dE/dl i.e. energy loss vs transverse position
 - Reoptimise optics?
 - For rectilinear pipe work conflicts with RF cavities
 - Interesting option for HFoFo
- Windows Mylar? Al? What thickness?

59.3 to 26.766 mm

Beam Instrumentation

- Muon rate is likely to be low $\sim 10^6$ -10⁷ or so
- Potential non-muon backgrounds
 - Muon decay electrons
 - Beam impurities
 - Dark currents (electrons from RF cavity surfaces)?
 - Knock on electrons (electrons knocked out of absorber/windows)?
- Beam Instrumentation:
 - Conventional BPM?
 - Scintillator screen
 - Can be non-destructive for muons
 - Phosphorescent coating on e.g. RF windows
 - Wire scanner
 - Decay electron monitoring
 - Something else?

Alignment

- Alignment Scheme proposes lumping several cooling cells together (approx 5 m chunks)
 - HFoFo has a natural "supercell" of 4.25 m length
 - Rectilinear more arbitrary
 - Remove RF and use the space for bellows
 - Shorten absorber appropriately
- How do we stand off forces between magnets?
 - First order cancellation if we ramp the line at the same time... but quench?

Correction for misalignment

- Solenoid lattice \rightarrow dispersion in vertical and horizontal
- Use trim coils inside magnet to control dispersion
- How sensitive is the lattice to alignment?
- Do we need horizontal and vertical steering coils?
 - E.g. Horizontal generates dispersion in the absorber
 - Vertical corrects for misalignments
 - What about trim solenoid?
- What sort of instrumentation do we need to check?
 - How sensitive?

Collimation

- Powerpoint level of study
 - Chicane to do a first momentum selection
 - Collimation solenoid 1-2 metres no need for high field?
 - Section of RF to do time selection
 - Need about 20-30 MeV → guess about 50 MV here
 - Pions are decaying as we go how much of a mess does this make?
 - (Nb: pion lifetime is about 8 metres at 200-300 MeV)
 - What about electron impurities?
- How clean do we need the beam to be?

Resource requirement

Breakdown

Engineering integration

- High-gradient RF cavity in magnetic field share with RF group
- Optics studies share with cooling group
- High field magnets share with magnets group
- Absorber infrastructure
- Vacuum
- Matching between different cooling cells share with cooling group
- Diagnostics
- Alignment and correction
- Collimation/beam selection