

- Synergies:
 - R&D that creates enhanced capabilities to the benefit of:
 - The development of a high energy (multi-TeV) muon collider <u>and</u>
 - Another first-rank scientific, innovative, or impactful programme

- Creation of world-class science with intense muon beams
 - As demonstrators, technology test beds, & to create community

Next steps

- Consolidate places were R&D programme can benefit muon physics activities beyond the muon collider
 Last Muon Community of the programme can be program

Our session at the 2nd Muon Community meeting

Timetable Tue 13/07 Wed 14/07 Mon 12/07 All davs 凸 Print Full screen Detailed view Filter Session legend 14:00 Synergies in high power and muon beam R&D in China Jingyu Tang Zoom 14:30 - 14:50 The COMET and PRISM programmes and synergies with muon collider programme Akira Sato 🥝 15:00 Zoom 14:50 - 15:10 Target studies for COMET and in the J-PARC Materials and Life Science Facility Prof. Shunsake Makimura Zoom 15:10 - 15:30 The potential to deliver high quality muon beams could enhance the capabilities of muon sources such as those at PSI, 🖉 Prof. Koichiro Shimomura Synergies in the Korean high-power accelerator programme (TBC) Prof. Juhahn Lee 16:00 Zoom 15:50 - 16:10

High-power hadron accelerators

- China Spallation Neutron Source (CSNS)
 - * Phase-I: 2011.10-2018.3
 - * Operation since 2018.9
 - * Operation at 100 kW: 2019.2
 - Phase-II: approved in principle by the central government, 2022-2028

	CSNS-I	CSNS-II
Beam Power (kW)	100	500
Repetition rate (Hz)	25	25
Target stations	1	1
Average beam current (∝A)	63	313
Protons per pulse (10^13)	1.56	7.8
Linac output energy (MeV)	80	300
RCS output energy (GeV)	1.6	1.6

CSNS ugrades:

- Upgrade to 500 kW
 - "Step 1" approved
 - Construction expected to start '22

CSNS-II:

- Approval required for next step
- Muon experiment included in proposal

CiADS (Construction: 2021-2027)

Experimental Muon Source (EMuS) at CSNS

- Study on EMuS at CSNS started from 2007, from early time focusing *x*SR applications to later multi-purpose muon facility
 - * Proton beam at CSNS-II : 1.6 GeV, 500 kW, 25 Hz
 - * Proton beam for EMuS: 1.6 GeV, 25 kW, 2.5 Hz, standalone
- Phased construction:
 - * Simplified scheme (included in CSNS-II): surface muons for \propto SR
 - * Baseline scheme: multi-purpose, based on SC solenoids

• MOMENT:

- A muon-decay, medium-baseline neutrino-beam facility
- Exploit high-power, low-energy linac for ADS studies to deliver high flux muon beam that is used to make a neutrino beam
- Component R&D:
 - EMuS target station

The COMET and PRISM programs and synergies with muon collider program: A. Sato

* ID single electron from the target and measure its energy precisely.

The COMET/Mu2e type experiments have some limitation on the achievable sensitivity and physics studies.

· at extraction of the muon storage ring.

Discussed at MC1: clear synergies with MC programme

Muon production at J-PARC (and MLF target): S. Makimura

Muon production at J-PARC (and MLF target): S. Makimura

Synergies in high-power and muon programmes in Japan: K. Shimomura

Conceptual layout of MUC test facility: R. Franqueira Ximenes

Next steps

- Clear synergies in high-power proton and muon development programmes in Asia
 - Conclusion as for the N/A and European contributions from last time
- Need further discussion to understand programmes by which to enhance scientific o/p with R&D work done in support of muon collider development
- nuSTORM-4-MUC test facility:
 - nuSTORM synergies as part of MUC test facility discussed last time
 - Pion yield in phase space of interest sufficient
 - Will now include in nuSTORM discussions