# Synergies in High-power Hadron Beams and Muon Beam R&D in China

#### Jingyu Tang Institute of High Energy Physics, CAS

2nd Muon Community Meeting, ZOOM, 2021.07.12-14

# **Outline**

- High-power hadron accelerator facilities and projects in China
- Muon-related studies
- Summary

# **High-power hadron accelerators**

- China Spallation Neutron
  Source (CSNS)
  - \* Phase-I: 2011.10-2018.3
  - Operation since 2018.9
  - \* Operation at 100 kW: 2019.2
  - Phase-II: approved in principle by the central government, 2022-2028

|                              | CSNS-I | CSNS-II |
|------------------------------|--------|---------|
| Beam Power (kW)              | 100    | 500     |
| Repetition rate (Hz)         | 25     | 25      |
| Target stations              | 1      | 1       |
| Average beam current<br>(µA) | 63     | 313     |
| Protons per pulse (10^13)    | 1.56   | 7.8     |
| Linac output energy<br>(MeV) | 80     | 300     |
| RCS output energy<br>(GeV)   | 1.6    | 1.6     |

#### **CSNS** campus



• The site for CSNS is in Dongguan, Guangdong Province.

- CSNS is the first large scientific facility in southeastern China, jointly invested by the central government and local government. It aims to promote advanced researches in
- the economic developed zone of Guangdong-Hong Kong.

Tatal budgets ~0.0D ONIV (an OFOM LICD)



### **Low-energy high-power accelerators**



#### ADS test facilities

- IMP: CW proton front-end, 25 MeV, 10 mA, max: 200 kW, RFQ-HWR-Spoke (162.5 MHz)
- IHEP: CW proton front-end, 10 MeV, 10 mA, 100 kW, RFQ-Spoke (325 MHz)
- CYCIAE-100 H- cyclotron @CIAE
  - 100 MeV, 500 μA, max: 50 kW
  - Multi-purpose: ISOL driver for radioactive ion beams, neutron source, isotope production, etc.



# **HIAF Project (Under construction)**



# CiADS (Construction: 2021-2027)



Funding: 3.9 BCNY

### Campus for HIAF and CiADS

#### 2020.11: Site preparation completed 2020.12: HIAF civil construction started



### **Muon related studies**

### MOMENT: a muon-decay mediumbaseline neutrino beam facility

- Based on ADS-type accelerator, muon decayed neutrinos (200-300 MeV), for LCPV and other neutrino physics
- Study since 2013, as a part of the neutrino program in China
  - Studies: proton driver, target station, muon channels, detector and physics



#### Proton linac

 CW, 1.5 GeV, 15 MW, synergy with China-ADS study

#### Target station

- Basic: Capture SC solenoids (14 T), Hg jet, Forward collection + extracting spent protons
- Fluidized granular target (waterfall target)
- Muon channels
  - Charge selection by curved solenoids
  - Wide spectrum transport (stopband)
  - Low-divergent muon decay channel



#### **Experimental Muon Source (EMuS) at CSNS**

- Study on EMuS at CSNS started from 2007, from early time focusing μSR applications to later multi-purpose muon facility
  - \* Proton beam at CSNS-II : 1.6 GeV, 500 kW, 25 Hz
  - \* Proton beam for EMuS: 1.6 GeV, 25 kW, 2.5 Hz, standalone
- Phased construction:
  - \* Simplified scheme (included in CSNS-II): surface muons for  $\mu$ SR
  - Baseline scheme: multi-purpose, based on SC solenoids



### EMuS Layout and Working Modes



Working modes (indep.):

- 1. Surface  $\mu$  mode
  - a) ∆p/p: <±4%
  - b) Ref. Pµ=29 MeV/c
- 2. Decay  $\mu$ SR mode
  - a) ∆p/p: <± 5%
  - b) Ref. Pµ =40-150 MeV/c
- 3. High-momentum  $\mu$  mode
  - a)  $\mu$  imaging, neutrinos
  - b) Ref. Pπ=200-450 MeV/c

#### Special design features:

- Conical graphite target
- Trumpet capture solenoids
- Forward collection
- Multiple working modes
- Muon momentum up to 450 MeV/c

### **R&D** and prototyping of EMuS target station







# EMuS target station (Baseline scheme)

- Target assembly
  prototype
- Al-stabilizer NbTi cable
- Capture solenoid
  prototype









### **Possible Muon Facilities at CiADS/HIAF**

#### @CiADS

- \* CW/pulsed beam: 500-600 MeV, Max: 2.5 MW (CW)
- A possible muon facility in the application hall (project: to a subcritical reactor)
- \* μSR, muon physics

#### @HIAF

- Pulsed intense heavy-ion beams for production of pions/muons
- 1-3 Hz, 1-5 GeV/c, 10<sup>15</sup> nucleon/pulse
- Possible muon experiments: μ-e conversion, μ g-2, Kaon rare decay etc.



# **Summary**

- Design studies on different muon beams have been working in China: MOMENT, EMuS@CSNS, muons@CiADS/HIAF
- R&D and prototypes for EMuS almost completed
- Different studies profit from the synergies on design concepts, key technologies, simulation tools, etc.

### Thanks for your attention!