

MC Comparative Cost Analysis: Part I – Phenomenlogical Model

Vladimir SHILTSEV (Fermilab)

MCC

June, 2021

(Fast Forward) Summary Table

	Civil (km)	E_rf (TeV)	E_mag (TeV)	Site P (MW)	Cost* (LHCU)
XFEL	3.3	0.017	0	15	$0.25\pm\!\!0.1$
LHC* (green field)	45	0	14.5	230	$1.4\pm\!0.4$
LHC project	0 ₊₆	0	14	120	1.00
ILC-Higgs	21 ₊₃	0.25	0	129	$0.9\pm\!\!0.3$
CLIC - tt	11 ₊₆	0.38	0	168	1.0 ± 0.3
CLIC-3	54 ₊₆	3	0	580	$2.9\pm\!\!0.9$
FCCee	100+20	0.016	0.24	282	1.3 ±0.4
FCChh*(no FCCee)	100 ₊₂₀	0.01	100	580	$\textbf{3.4} \pm \textbf{1.1}$
FCChh after FCCee	0	0.01	100	580	$2.8\pm\!\!0.9$
MC-HF	0.3 ₊₃	0.02	0.13	200	0.6 ±0.2
MC-3	4.5 ₊₇	0.06	3	230	1.2 ± 0.3
MC-10 base	10+7	0.07	10	310	1.5 ± 0.5
MC-10* max (M.P.)	10 ₊₅₉	0.13	10	310	1.8 ± 0.5
MC-14* rcs-LHC tun	0	0.03	14	340	1.4 ±0.4
					sermilab

<mark>αβγ - Model</mark>

Intro: Cost

- Cost is set by technology
 - Accelerator
 technology (magnets
 NC and SC, RF and
 SCRF)
 - Civil construction technology
 - Power production, delivery and distribution technology

2014 JINST 9 T07002

2014 Cost analysis

- 17 "Data Points" Costs of Big Accelerators:
 - Actually built:
 - RHIC, MI, SNS, LHC
 - Under construction:
 - XFEL, FAIR, ESS
 - Not built but costed:
 - SSC, VLHC, NLC
 - ILC, TESLA, CLIC, Project X, Beta-Beam, SPL, v Factory

Wide range :

- 4 orders in Energy, >1 order in Power, >2 orders in Length
- Almost 2 orders in cost
 - (normalized to US TPC)

	Cost (B\$) Year	Energy (TeV)	Accelerator technology	Comments	Length (km)	Site power (MW)	TPC range (Y14 B\$)
SSC	11.8 BS (1993)	40	SC Mag	Estimates changed many times [6-8]	87	~ 100	19-25
FNAL MI	260MS (1994)	0.12	NC Mag	"old rules", no OH, existing injector [9]	3.3	~ 20	0.4-0.54
RHIC	660MS (1999)	0.5	SC Mag	Tunnel, some infrastructure, injector re-used [10]	3.8	~ 40	0.8-1.2
TESLA	3.14 B€ (2000)	0.5	SC RF	"European accounting" [11]	39	~ 130	11-14
VLHC-I	4.1 B\$ (2001)	40	SC Mag	"European accounting", existing injector [12]	233	~ 60	10-18
NLC	~ 7.5 B\$ (2001)	1	NC RF	~ 6 B\$ for 0.5 TeV collider, [13]	30	250	9–15
SNS	1.4 B\$ (2006)	0.001	SC RF	[14]	0.4	20	1.6-1.7
LHC	6.5 BCHF (2009)	14	SC Mag	collider only — existing injector, tunnel & infrstr., no OH, R&D [15]	27	~ 40	7–11
CLIC	7.4-8.3B CHF(2012)	0.5	NC RF	"European accounting" [16]	18	250	12-18
Project X	1.5 B\$ (2009)	0.008	SC RF	[17]	0.4	37	1.2-1.8
XFEL.	1.2 B€ (2012)	0.014	SC RF	in 2005 prices, "European accounting" [18]	3,4	~ 10	2.9-4.0
NuFactory	4.7-6.5 B€ (2012)	0.012	NC RF	Mixed accounting, w. contingency [19]	6	~ 90	7-11
Beta- Beam	1.4-2.3 B€ (2012)	0.1	SC RF	Mixed accounting, w. contingency [19]	9.5	~ 30	3.7-5.4
SPL	1.2-1.6 B€ (2012)	0.005	SC RF	Mixed accounting, w. contingency [19]	0.6	~ 70	2.6-4.6
FAIR	1.2 B€ (2012)	0.00308	SC Mag	"European accounting" [20], 6 rings, existing injector	~ 3	~ 30	1.8-3.0
ILC	7.8 B\$ (2013)	0.5	SC RF	"European accounting" [21]	34	230	13-19
ESS	1.84 B€ (2013)	0.0025	SC RF	"European accounting" [22, 23]	0.4	37	2.5-3.8

V.Shiltsev, A phenomenological cost model for high energy particle accelerators

Methodology of the $\alpha\beta\gamma$ – Model

Adjust all costs to TPC (US accounting)

- usually, btw 1.9 to 2.4 x European Accounting

Break TPC in just three parts (with sum = total)

- "Tunnels" (civil construction and siting)
- "Accelerator systems" (SC and/or NC RF, Magnets)
- "Power" (site, cryo, generators/converters/distribution, etc)
- Scale each part with two parameters: $a_{L,E,P}$ and $b_{L,E,P}$
 - L (in 10 km units), E (in TeV of cme), P (in 100 MW)

$$TPC = a_L \left(\frac{L}{10\,\text{km}}\right)^{b_L} + a_E \left(\frac{E}{1\,\text{TeV}}\right)^{b_E} + a_P \left(\frac{P}{100\,\text{MW}}\right)^{b_P}$$

- (Simplify to SQRT and round up... set all $b_{L,E,P} = 1/2$)
 - as they were typically found btw 0.4 and 0.6

🛟 Fermilab

Illustrations

Comment:

Sqrt-functions are quite accurate over wide range because such dependence well approximates the *"initial cost" – effect*:

The $\alpha\beta\gamma$ cost model: $Cost(TPC) = \alpha L^{1/2} + \beta E^{1/2} + \gamma P^{1/2}$

- a) Is for a "green field" facility !
- b) US-Accounting !
- c) There is hidden correlation btw *E* and technology progress
- d) Pay attention to units(10 km for L, 1 TeV for E, 100 MW for P)
 - α≈ 2B\$/sqrt(L/10 km)
 - β≈ 10B\$/sqrt(E/TeV) for SC/NC RF
 - β≈ 2B\$ /sqrt(E/TeV) for SC magnets
 - β≈ 1B\$ /sqrt(E/TeV) for NC magnets
 - γ≈ 2B\$/sqrt(P/100 MW)

USE AT YOUR OWN RISK!

V.Shiltsev | On the Cost of MC

Take LHC as an Example:

- $\alpha\beta\gamma$ Model:
 - 40 km of tunnels
 - 14 TeV c.o.m SC magnets
 - ~150 MW of site power

$$2\sqrt{40/10} = 4$$

 $2\sqrt{14} = 7.5$

$$2\sqrt{150/100} = 2.5$$

TOTAL PROJECT COST : 14B\$ ± 4.5B\$

ITF T.Roser talk @ PLUB-II (USD 2021):

- 4.6 B\$ existing injector complex 4.06 B\$
- new accelerator systems
- 2.75 B\$ new infrastructure and civil

Total:

explicit labor

~1.4 B\$

Future Colliders w.r.t. LHC

	Civil (km)	E_rf (TeV)	E_mag (TeV)	Site P (MW)	Cost* (LHCU)	Cost Reported
XFEL	3.3	0.017	0	15	$0.25\pm\!\!0.1$	1.7 BEUR
LHC* (green field)	27 ₊₂₈	0	14.5	230	$1.4\pm\!\!0.4$	13-15 B?
LHC project	0 ₊₆	0	14	120	1.00	8-10 B?
ILC-Higgs	21 ₊₃	0.25	0	129	0.9 ±0.3	7 kOKU
CLIC - tt	11 ₊₆	0.38	0	168	1.0 ± 0.3	5.9 BCHF
CLIC-3	54 ₊₆	3	0	580	$2.9\pm\!\!0.9$	18.9 BCHF
FCCee	100 ₊₂₀	0.016	0.24	282	$1.3\pm\!\!0.4$	10.8 BCHF
FCChh*(no FCCee)	100 ₊₂₀	0.01	100	580	$\textbf{3.4} \pm \textbf{1.1}$	24 BCHF
FCChh after FCCee	0	0.01	100	580	$2.8\pm\!\!0.9$	17 BCHF
MC-HF	0.3 ₊₃	0.02	0.13	200	0.6 ±0.2	?
MC-3	4.5 ₊₇	0.06	3	230	1.2 ±0.3	?
MC-10 base	10 ₊₇	0.07	10	310	1.5 ±0.5	?
MC-10 max M.P.	10 ₊₅₉	0.13	10	310	1.8 ±0.5	?
MC-14* rcs-LHC tun	0	0.03	14	340	$1.4\pm\!\!0.4$?

"αβγ – Model" : Notes

- Costs of future technologies are not well known:
 - plasma, lasers, crystals, "magic cheap" magnets, tunnels, HTS, etc
- Costs of civil construction and power systems are driven by larger economy (not by us)... "stable"
- Having injector/reuse infrastructure helps a lot (~1/3 of cost)
- Follows from the model:
 - Cost is weak function of luminosity (see next slide)
 - Also, LHC 10B\$, HL-LHC 1B\$ with x5 increase in luminosity
 - It's OK to start high *E*, low *L*...CESR, Tevatron increased *L* >100x, LHC >10x

🔁 Fermilah

- Cost is moderate function of length/circumference
- Cost is strong function of Energy and technology
- Of course, the model error bars are large (range of ~2) but at least allows approximately sort proposals in categories
 - E.g., "Less than LHCU", "1-2 LHCU", "More than 3 LHCU", etc

"αβγ – Model" : 10 TeV Muon Collider

Civil 10-16%

"αβγ – Model" : Caveats

- "*Non-uniformity*": machine costs estimated by proponents and in variable methodologies
- Analysis was done in 2013:
 - many more projects have been costed since then: FCCee, FCChh, CepC, SPPC, LHeC, NICA, PIP-II, EIC, LCLS-II & HE, HL-LHC
 - others updated or finished: XFEL, SwissFEL, FRIB, ESS, FAIR, ILC, CLIC
 - inflation 7yrs x 3% = 21%... varies by region
- Analysis to be updated for the Snowmass'21:
 - As part of the AF Implementation Task Force
 - Scaling and relative weights of cost factors

BACK UP SLIDES

