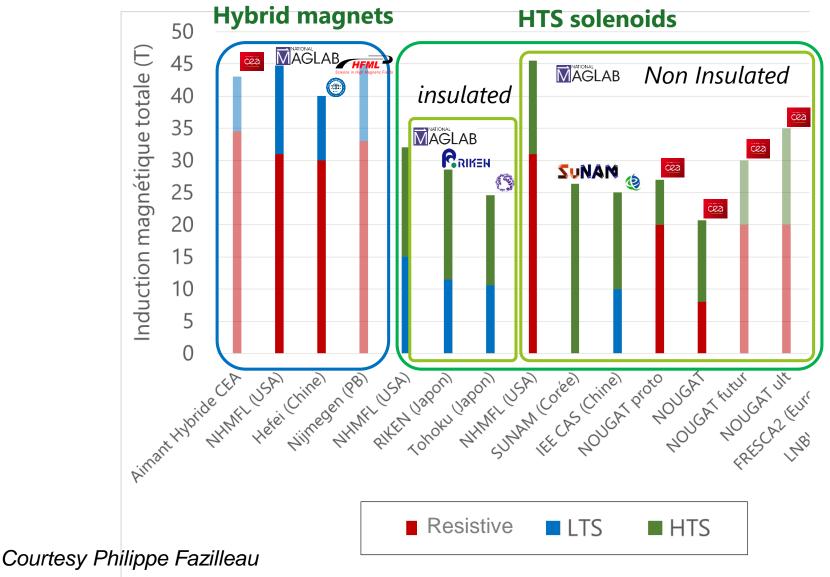
DE LA RECHERCHE À L'INDUSTRIE

HIGH FIELD SOLENOIDS


LIONEL QUETTIER

www.cea.fr

DE LA RECHERCHE À L'INDUSTRI

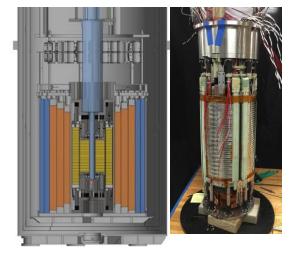
HIGH FIELD MAGNETS PANEL

HYBRID MAGNETS: LTS + RESISTIVE MAGNETS

			50 E 45
<image/>		Résistif LT	E 45 et 45 35 30 25 25
Grenoble, France	Nijmegen, Netherlands	Hefei, China	Tallahassee, FL
8.5T LTS + 34.5T Res.	12T LTS + 33T Res.	10T LTS + 30T Res.	11T LTS + 34 Res.
0.51 LIS + 54.51 Kes. ART	A5 T	1 01 L13 + 501 Nes. 40 T	111 LIS + 54 Res. A5 T

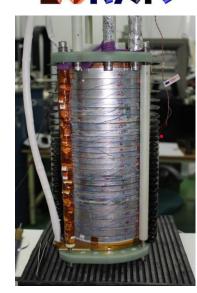
8.5T LTS + 34.5T Res.	12T LTS + 33T Res.	10T LTS + 30T Res.	11T LTS + 34 Res.
43T	45 T	40 T	45 T
34 mm , 24 (30) MW	32 mm , 24 MW	32 mm , 25.4 MW	32 mm , 32 MW
RCOCC Nb-Ti, 1.8 K	CICC Nb3-Sn, 4.2 K	CICC Nb3-Sn, 4.2 K	CICC Nb3-Sn, 4.2 K
7.1 kA, 1100/1826 mm dia.	20 kA, 720/1286 mm dia.	13.4 kA, 680/1650 mm dia.	20 kA

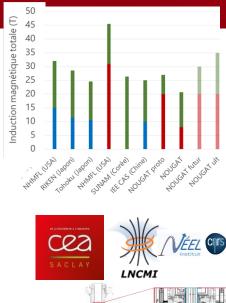
Courtesy Philippe Fazilleau

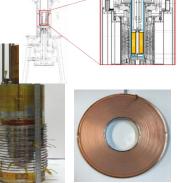

Diapositive 3

DE LA RECHERCHE À L'INDUSTR

HTS SOLENOIDS

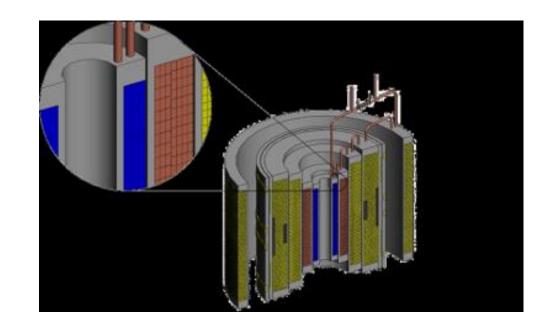

Courtesy Philippe Fazilleau





NHMFL, USA	LBC3, NHMFL, USA	SUNAM, Korea	NOUGAT, CEA, France
17 T (HTS) + <i>15 T (LTS)</i>	14.5 T (HTS) + <i>31 T (resistive)</i>	26.4 T (HTS)	12.5 T (HTS) + 20 T (res)
32 T	45.5 T		32.5T
Insulated magnet	No-Insulation (NI)	No-Insulation (NI)	Metal-as-Insulation (MI)
REBCO 4 mm, 4.2 K	REBCO 4 mm, 4.2 K	REBCO 4-8 mm, 4.2 K	REBCO 6 mm, 4.2 K
DI 40 mm	DI 14 mm	DI 35 mm	DI 50 mm

Diapositive 4



NMR COMMERCIAL MAGNETS

Bruker ASCEND 1.2 GHz (28.2T – 54 mm warm bore)

Strongest commercial NMR

Combination of LTS/HTS materials Operating temperature of 1.9K

11.7T WHOLE BODY MRI MAGNETS

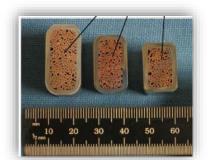
Magnets manufactured by ASG - Italy delivered at NIH (US) and at NRI (Korea) - On-going commissioning

Iseult - On-going commissioning CEA Neurospin - France

	NIH/NRI	Iseult
Conductor	NbTi	NbTi
Current	246A	1483A
Inner diameter	68 cm	90 cm
OD	2.6m	5m
Length	4m	5m
Shielding	Passive	Active
Mass	450 tons (380 tons of iron)	132 tons
Temperature	2.3K	1.8K

NbTi is still a serious candidate for 1m ID bore / 10T

Challenge #1 : mechanics (Laplace forces proportional to B²) Designs with B>20T are with a vertical field orientation. What about horizontal solenoids?


- Conductor
 - Need of stabilized/reinforced NbTi/Nb3Sn conductors for large high field solenoids

Iseult WB 11,7T MRI NbTi RIC

Hybrid magnet 45T Grenoble NbTi RCOCC

Hybrid magnet 45T Nijmegen Nb3Sn/Cu CICC

Hybrid magnet 45T – NHMFL Nb3Sn/Cu CICC (typical size 3 x 1.5 cm)

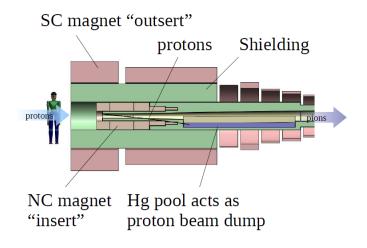
HIGH FIELD SOLENOIDS CHALLENGES

bobbin

HTS Solenoid specific challenges

• Protection (insulated / NI / MI / PI)

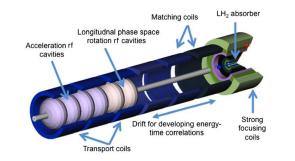
- Field homogeneity due to screening currents (overshoot and vortex shaking technics)
- Cryogenics
 - Cooling of the core part (use of thermal drains...)
 - Less efficient cooling due to the magnetic forces acting on helium (diamagnetism)

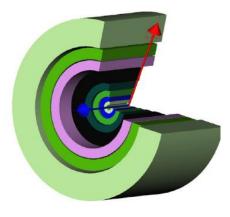

bobbin

bobbin

MUON COLLIDER SOLENOIDS

Target end solenoid




Hybrid design (superconducting + conventionnal magnets)

Target field from 15T to 20T, SC coil inner diameter up to 1.2m

Cooling solenoids

Need of high field and very high field solenoids, as short as possible >30T, SC coil inner diameter of 50mm for the final cooling

Thank you for your attention