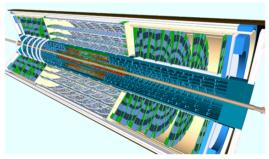


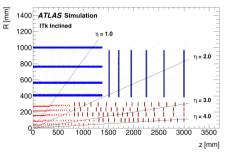
Simulations of ATLAS ITk strip detectors

2nd Allpix² User Workshop

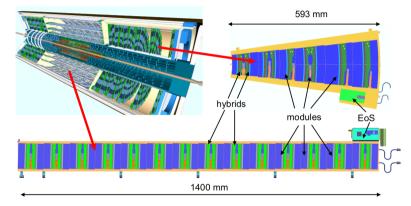
Radek Privara Palacky University Olomouc (radek.privara@cern.ch)

August 17-19, 2021

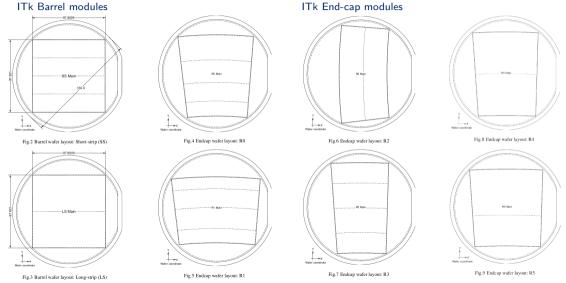

- 1. ATLAS Inner Tracker
- 2. Module testing
- 3. Allpix² simulations
- 4. Radial geometry in Allpix²
- 5. Summary


ATLAS Inner Tracker

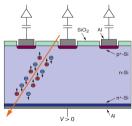
- ATLAS Inner Tracker (ITk) is the innermost (future) part of the ATLAS Detector.
- Critical for particle track and vertex reconstruction.
- Divided into two regions barrel and end-cap.
- Utilizes two types of detectors ITk Pixel and ITk Strip segments.

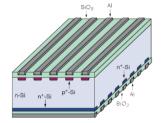

ATLAS ITk visualization.

ATLAS ITk layout: pixel modules in red, strip modules in blue.



- Barrel and end-cap strip modules differ in size and shape.
 - Barrel modules are rectangular and placed on "staves."
 - End-cap modules are trapezoidal, have various shapes (R0–R5) to fit onto a "petal."


Barrel and end-cap regions of the ITk. Barrel modules on a stave, end-cap modules on a petal.



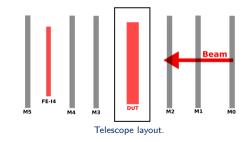
- Strip detectors based on P-N junctions with applied high voltage.
- Passage of a charged particle \rightarrow free charge carriers.
- Charge propagation to electrodes according to the applied voltage.
- $\bullet\,$ Monitoring of collected charge on electrodes $\rightarrow\,$ position of the particle.

Strip module cross section.

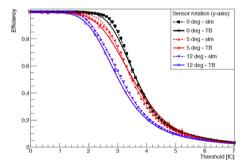
Top view of a strip module.

Barrel strip module prototype.

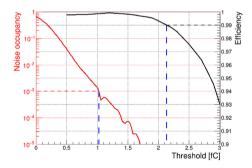
- Animation of charge propagation in a strip sensor in Allpix².
 - Region-of-interest spans 5 strip cells.
 - Electric field generated in TCAD.
 - Only electrons propagated.


Module testing

- Module prototypes characterized using test beam measurements.
- EUDET-type beam telescopes: six Mimosa planes and FE-I4 timing plane.
- Telescope reconstructs particle tracks \Rightarrow reference hit position in the DUT, compared to recorded position.

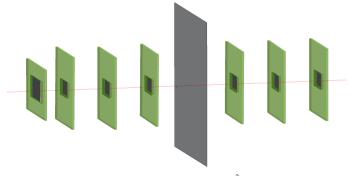


DURANTA Telescope at DESY.

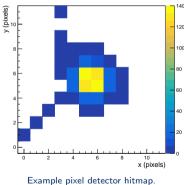


- Interest primarily in detection efficiency and noise occupancy.
- Results obtained by performing threshold scans.
- ATLAS ITk Collaboration requirement for an end-of-life module a threshold range with:
 - o efficiency over 99%,
 - \circ noise occupancy under 0.1%.

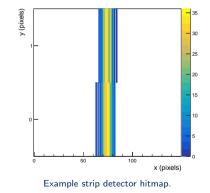
Efficiency comparison of test beam data and Allpix² results for various incidence angles.


Efficiency and noise occupancy for an irradiated module. Blue horizontal lines denote the threshold range where performance requirements are satisfied.

Allpix² simulations

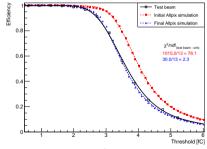

- Focus mostly on recreation of test beam measurements in simulations.
- Reconstruction and analysis using the Corryvreckan framework or Python scripts.
- Efforts to find optimal simulation parameters that give the best agreement with test beam data.

Telescope simulation in Allpix².

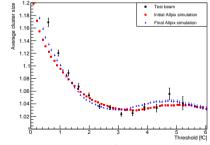

- Strip modules can be simulated in Allpix² without any modifications to the framework.
- A strip is simply a long pixel.

Hitmap for example pixel det

number_of_pixels = 12 12 pixel_size = 50um 50um



Hitmap for example strip det


number_of_pixels = 150 2 pixel_size = 74.5um 5mm

- $\bullet\,$ Number of configuration parameters optimized to find the best agreement between Allpix^2 and test beam data. Their effect varied:
 - $\checkmark~$ active sensor thickness
 - $\checkmark~$ electric field model
 - \checkmark cross-talk effect
 - \times physics lists

Efficiency curve from Allpix² before and after parameter optimization.

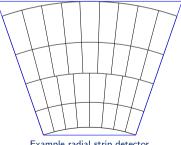
Average cluster size from Allpix² before and after parameter optimization.

Radial geometry in Allpix^2

- Rectangular strip detectors can be simulated, but radial end-cap detectors currently cannot.
- Simulation studies thus limited to only the ITk barrel modules.
- Implementation of radial geometry into Allpix² currently in progress.
 - $\circ~$ Simulations are essentially functional, some features are missing/not yet implemented.

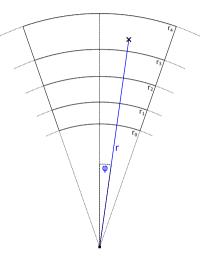
strip length number of strips inner pitch angular pitch

- Radial detector model defined using 4 parameters for every strip row:
 - o number of strips,
 - \circ angular pitch,
 - \circ inner pitch,
 - \circ strip length.
- Model type defined as radial_strip.

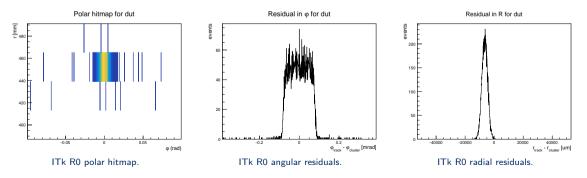

ATLAS ITk R0 model definition:

```
type = "radial_strip"
number_of_strips = 1026, 1026, 1154, 1154
angular_pitch = 0.193mrad, 0.193mrad, 0.171mrad, 0.171mrad
inner_pitch = 74.4um, 78.1um, 73.6um, 78.5um
strip_length = 19mm, 24mm, 29mm, 32mm
```


- Every detector is internally represented by a single volume wrapper (+ support structures).
- Straightforward for rectangular detectors, less trivial for radial detectors.
- Assignment of propagated charge to an individual pixel handled by the DetectorModel::getPixelIndex method.
 - $\circ\;$ This allows for model-specific implementation.

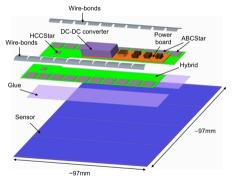

Example pixel detector (volume wrapper in blue).

Example radial strip detector (volume wrapper in blue).

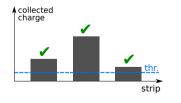


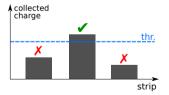
- Local coordinate centre defined in the sensor focal point.
- Hit positions converted from cartesian to polar (r, φ) coordinates, used to:
 - evaluate if a hit is inside a sensor.
 - assign collected charge to a strip.
 - \circ create relevant outputs (polar hitmap, residuals in r, φ).

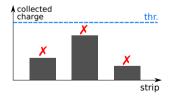
- Radial geometry implementation tested on an ITk R0 detector model.
 - $\circ~$ Correct dimensions and geometry.
 - Linear electric field.
 - Cross-talk effect via the CapacitiveTransfer module.
- Standard output plots available, more added specifically for radial detectors.


- Allpix² has been used for performance studies of ATLAS ITk strip modules.
- Great agreement of simulation results with real measurements of prototypes.
- Recent developments enable simulations of strip modules with radial geometry.
 - Work in progress.
 - $\circ~$ This extends the simulation studies to the entire ITk strip detector.

Backup

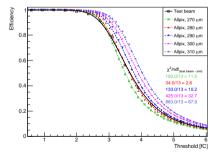

- A strip module has a number of components:
 - Silicon strip sensor.
 - Read-out ASICs.
 - Hybrid Controller Chips (HCC).
 - Power board: low-voltage DC-DC converter, high-voltage circuit.
 - Autonomous Monitor and Control (AMAC) chip.
- Barrel and end-cap modules have the same component groups.


A barrel strip module layout with components.

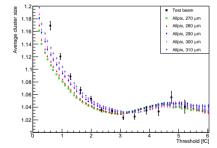


- Module characterization by performing threshold scans:
 - $\circ~$ Systematically varying a charge threshold (for a hit to be called).
 - Observing several parameters as a function of the threshold.
- At low thresholds, noise creates a lot of false hits.
- At high thresholds, real hits are ignored.

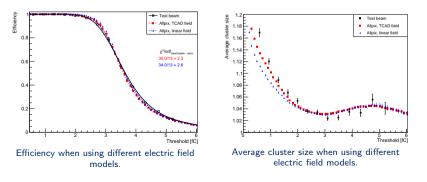
Low thresholds are noisy.

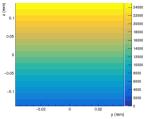


High thresholds have no hits.

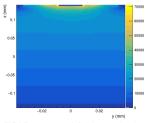

Medium thresholds are fine.

- Generally active sensor thickness can be smaller (up to \sim 10%) than the physical thickness.
- The effect of active thickness was studied for various values.
- Active thickness of 280 $\mu {\rm m}$ was the best fit based on efficency agreement.


Efficiency curves for various active thickness values.



Average cluster size for various active thickness values.



- Comparison of simulation results when using a linear EF model and a TCAD-generated EF.
- Some effect on average cluster size at lower thresholds.
- Negligible effect on efficiency curves.
- $\Rightarrow\,$ We are using the linear model, simpler and much faster.

Linear electric field magnitude.

TCAD-generated field magnitude.