

Studies of antiproton annihilation at rest with nuclei using Timepix3

Giovanni Costantini¹ Angela Gligorova ²

2nd Allpix Squared User Workshop 17-19 August 2021

¹ Università degli studi di Brescia

² Stefan Meyer Institute, ÖAW, Vienna

Outline:

- Antiproton Decelerator and ASACUSA experiment
- Measurements of antiproton-nucleus annihilation
- GEANT4 simulations
- Allpix² digitization and comparisons
- Conclusions and further work

Antiproton Decelrator (AD)

- Only facility in the world to produce a low energy beam of \bar{p}
- Slow \bar{p} are used for antihydrogen production and ultra precise antimatter studies
- The facility hosts 5 different experiments (ASACUSA, AEgIS, ALPHA, BASE, GBAR)
- Main goals of the experiments are CPT violation studies and antimatter gravity acceleration measurements

ASACUSA Experiment

The collaboration:

- 38 reaserchers, 14 institutions, 4 countries
- First experiment to produce an \overline{H} beam

Main foci of the experiment:

- Hyperfine structure of antihydrogen
 - Study of low antiproton annihilations
- Spectroscopy of Antiprotonic Helium

Image: B. Kolbinger «Machine Learning for Antihydrogen detection in ASACUSA»

Low energy antiproton annihilation

How it works:

- p̄ annihilates on one nucleon and ~2 GeV energy is released, producing on average five pions
- Some of these pions penetrate inside the nucleus, (depending on the size of the nucleus ⇒ different probabilities)
- Residual nucleus ⇒ decay mechanism according to the excitation energy (Intranuclear Cascade Model)
- p̄-nucleus annihilation at rest can produce: p, π, d,
 t, n, α, ³He, ⁴He, ⁶He, ⁸He, Li...

Why we study it:

- All antihydrogen experiments detect the H
 through annihilation ⇒ p̄-nucleus annihilation is a
 key process!
- Annihilation/fragmentation models validation
 - CHIPS (CHiral Invariant Phase Space)
 - FTFP (FriTjoF Precompound)
 - FLUKA (FLUktuierende KAskade)
- All models developed for High Energy Physics and none of them uses annihilation data at rest

What we measure:

- Average multiplicity
- Deposited energy distribution of the annihilation fragments – heavy fragments stop inside the sensor

Tuning of Monte Carlo simulations (GEANT4) to better match the measurements

Measurements of \bar{p} -nucleus annihilation

Measurements:

- Slow extraction of 150 eV \(\overline{p}\) from a trap
- Beam focusing with Einzel lens
- \bar{p} annihilating on ^{12}C , ^{42}Mo and ^{79}Au
 - 20 x 20 mm² foil, 2 μm thick

Timepix3 quad in ASACUSA:

- 512 x 512 pixels (~ 28 x 28 mm² active area)
- 500 μm thick Si sensor
- 150 V bias voltage
- Compact Spidr readout system developed by NIKHEF

Annihilation event in data and in simulations

How we measure antipton-nucleus annihilation:

- Trigger from the hodoscope -> time stamped event in Timepix3
- Charged products of the annihilation
 - Minimum ionizing particle (MIP)
 - Highly ionizing particle (HIP)

How we simulate annihilation:

- GEANT4 (CHIPS and FTF models) and FLUKA:
 - 50,000 annihilation events per element
 - Full geometry of the set-up and the detectors
 - Timepix3 is a piece of silicon (no clusters)
- For direct comparison with data-> digitization is needed!

Timepix3 response to large energy depositions

Halo and volcano effect:

- Induced current in neighbouring pixels ->
 typically below 4-5 keV (removed in the data)

 S. Aghion et al 2018 JINST 13 P06004
- Pixel taking random value when the energy deposit is ≥ 500 keV (saturation effect) -> implemented in the current version of the digitization with Allpix²

Plasma effect:

 Heavy charged particles (including alpha particles) exhibit substantially wider tracks (plasma effect screens the drift field) -> not yet included in Allpix²

Allpix²

Modules for reading:

Deposition reader —————— Read root files produced by FLUKA and GEANT4 simulations both

Modules for propagation:

- Electric field reader
- Project Propagation
- Simple transfer

Simple production and propagation of hole-charge pairs model using linear Electric field model

Module for digitization:

Default digitizer

Tuned digitizer module with saturation option enabled for taking into consideration the volcano effect

Module for output:

ADTreeWriter

Ad-hoc module for production of root files needed for further cluster analysis (same for data and simulations!)

Volcano effect in Allpix²

Threshold obtained from data of direct $\overline{\mathbf{p}}$ annihilations in Timepix3

- Gaussian fit of the most energetic pixel in a cluster:
 - *μ*: 130 ke- (~470 keV)
 - σ: 6 ke- (~20 keV)

In Allpix² for \overline{p} -nucleus simulations: set all pixels with an energy deposition above 500 keV to a random value following the Gaussian distribution

No threshold in Allpix²

Etot for PIXELS

Energy deposits before and after Allpix²

GEANT4 simulations for carbon foil, FTF model:

- Raw Geant4 simulations
- Allpix² simulations with saturation effect

MIPs:

 Same energy deposit between particles in Geant4 and clusters in Allpix²

HIPs:

 Smaller energy deposit in the clusters

Cluster size in data and simulations

MIPs:

• same in data and Allpix²: small/straight line clusters, ~ 5-20 pixels

HIPs:

- In data: blobs > 20 pixels, even with halo removed
- In Allpix²: small clusters, typically < 10 pixels

Maybe plasma effect needs to be introduced?

Conclusions and further work:

- Allpix² is being successfully used for studying low energy antiproton-nuclei annihilation via comparison with different Monte Carlo models (Geant4, FLUKA is still work in progress)
- Thanks to the involvement of the Allpix² developers (Simon, Paul) it has been customized by adding physical
 effects intrinsically present in the DAQ, which are essential in our case
 - Energy deposits/cluster topology from MIPs show great agreement with data
 - Energy deposits/cluster topology from HIPs show somewhat good agreement with data but more work
 is needed
 - Further simulations of α particles impinging on the detector will be compared with data from ²⁴¹Am to further verify the digitization with Allpix² for heavily ionizing particles
- We are setting up a new, large scale physics study of \bar{p} -nucleus annihilation:
 - ~20 different targets
 - Cube-like, 4π detector based on Timepix3/Timepix4 ASICs
 - Allpix² for the detector response model in simulations

Thank you for your attention ©