Simulating Hexagonal Pixel Cells in Allpix Squared

Ryuji Moriya, CERN Summer Student, University of Glasgow
Supervisor: Katharina Dort, Magdalena Munker

$2^{\text {nd }}$ Allpix Squared User Workshop

Outline

- Introduction to Hexagonal Pixels
- Implementation of Hexagonal Pixel Geometry into Allpix Squared
- First simulation with MIMOSA26
- Summary and Outlook
- Current semiconductor detectors overwhelmingly use rectangular/square pixel design
- Hexagonal pixel design offers multitude of benefits
- Smaller distance edge region (same area) \rightarrow reduced charge collection time \rightarrow improved time resolution
- Less charge sharing \rightarrow better detector efficiency
- More homogeneous response in pixel \rightarrow more precise timing resolution
- Fastpix

T. Kugathasan, et al.: https://doi.org/10.1016/i.ni ma.2020.164461
- Current Allpix Squared detector models only compatible with rectangular/square pixel geometry
- A need for hexagonal pixel geometry \Rightarrow new detector class

Figure: the rectangular/square pixel grid

University Implementation of Hexagonal Pixel
of Glasgow Geometry

```
std::pair<int, int> DetectorModel::getPixelIndex(const ROOT::Math::XYZPoint& position) const {
    auto pixel_x = static_cast<int>(std::round(position.x() / pixel_size_.x()));
    auto pixel_y = static_cast<int>(std::round(position.y() / pixel_size_.y()));
    return {pixel_x, pixel_y};
}
```

- For a rectangular/square pixel geometry, the calculation of the pixel index for a given position is simple...

Univeritit Implementation of Hexagonal Pixel of CGascow Geometry

- ...but not so for a grid of hexagonal pixels
- Sides are no longer restricted to being parallel to the x or y axis

!?
- The idea is to look for periodicity where the geometry repeats itself in the x, y directions
- This corresponds to the grid seen at the bottom left of the diagram
- Partially inspired by earlier attempt to implement Hexagonal pixel geometry by Tasneem et al. https://github.com/allpix-squared/allpixsquared/pull/33/files

University Implementation of Hexagonal Pixel of Glasgow Geometry

University Implementation of Hexagonal Pixel Geometry

- The unit cell is then divided into 12 different regions
- Pixel index is assigned depending on which region the hit position corresponds to

University Implementation of Hexagonal Pixel of Geometry

- What about regions seen in the diagram (red)?
\Rightarrow use linear equations!

$$
y=m x+b
$$

- Assign a different index depending on if it is above or below the side length

Basic Simulation of Hexagonal Pixel Sensor

- A basic comparison between Hexagonal Pixel sensor vs. Rectangular Pixel sensor was performed
- Model used: MIMOSA26
- Model already implemented within Allpix Squared
- Number of events: 15,000
- Pixel pitch was adjusted for both sensors to ensure same area
- Assume only geometrical effect
- Custom electric field for hexagonal
 geometry were not included

Hit Map
Hitmap for MIMOSA26

Cluster Size

- Cluster size of 3 dominating in hexagonal case
- More likely to see cluster size of 3 due to 3 neighbor pixels at edge

Cluster Size For Mimosa 26

Cluster Charge

Cluster Charge for Mimosa 26

Cluster Seed Charge for Mimosa 26

- Cluster seed charge: expected higher peak for hexagonal pixels due to less charges shared with neighbors
- However, the shape is practically the same
- Still under investigation

Summary and Outlook

- Outlook:
- Preparation for importing field/potential maps for hexagonal pixel cells is ongoing
- Summary:
- Hexagonal pixel sensors provide several benefits (less charge sharing, better time resolution, etc.)
- New detector class dedicated to hexagonal pixel sensors was created
- Basic simulation of MIMOSA26 with hexagonal pixels was performed (hitmap, cluster size, cluster charge, etc.)

Thank you!

Questions?

