Allpix Squared in Education & Outreach

Paul Schütze

2nd Allpix Squared User Workshop 17th August 2021

Education

Allpix Squared in Education – Why!?

Paul, we'd like to have a tutorial on the resolution of silicon detectors for our researcher school, but there's no space at the Test Beam. Could you ...?

or

- Thinking back to university... Silicon detectors can be quite complex!
- Understanding of silicon detectors (not only on a students level) can profit from ...
 - Visualisation e.g. for charge carrier transport
 - "Hands-on" for getting a feeling for what influences the performance
 - sure a lab is cooler than a simulation, but who has got a test beam with a multi-Tesla magnet available?
- Positive side effect: training for skills in HEP software tools Geant4, ROOT et al

Allpix Squared Lab Exercise

- Used within ...
 - EDIT-2020 Young Researcher School (in-person)
 - Bonn-Cologne Graduate School Lab Courses (virtual)
- Task
 - Run Allpix Squared
 - Determine the resolution of a given detector
 - Improve the resolution by changing the setup or detector parameters

Technical Prerequisites

- How to equip everyone with ROOT, Allpix Squared & Geant4 ...
 - Let participants install software themselves incompatible OS, time consuming
 - Docker images overhead in syntax, difficulty opening resulting ROOT files
 - CVMFS installation Installation of / access to CVMFS, incompatible OS
 - ✓ Fully prepared computers safe&simple, in-person events only, nothing to take home
 - ✓ VirtualBox available for all* OS, take home, virtual event compatible *pretty much

- VirtualBox is our best solution for virtual events/tutorials
 - Machine with ROOT, Geant4, Allpix Squared (& Corryvreckan) is available
 - (Not regularly updated)
 - Instructions available

Materials I

- Depends on experience of participants
- Prepare document with ...
 - Short introduction to Allpix Squared
 - A few words on silicon detector resolution
 - Optional: Intro & cheat sheet for/to command line, ROOT, Allpix Squared
 - Instruction on setup
 - Description of tasks
 - Hints on how to fulfil these

Task 2: Spatial resolution simulation

Marta Baselga Bacardit posted on 30. Oct. 2019 11:02h - last edited by Paul Schuetze on 17.

Introduction

Sensor resolution

One of the most pressing goals of silicon sensor R&D is to develop position-re parameters: There are obvious ones, such as the pixel pitch, but also more tric

For a binary read out pixel detector with a pitch of w, the resolution lies around resolution, but also to find ways to improve the resolution.

Allpix²

Allpix² is a modular simulation framework for silicon detectors.

Its main functionality is to simulate the detector response to a traversing parti

For simulating such a detector response, the following steps are performed:

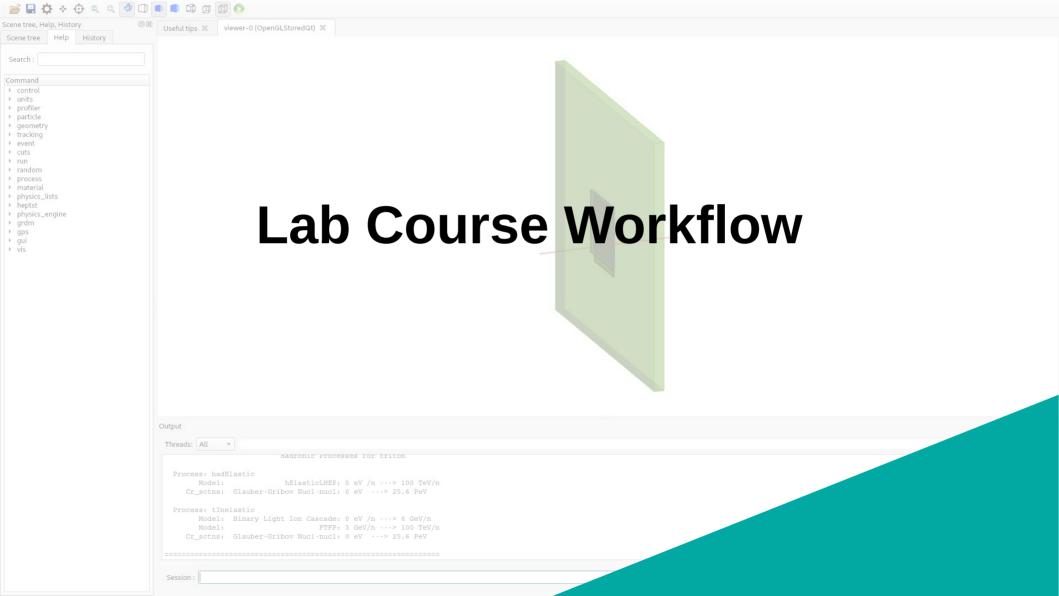
- . A user-defined particle is simulated to traverse the user-defined silicon ionization processes. The number of electron-hole pairs is calculated.
- . In the (of course user-defined) electric field inside the active sensor volu Runge-Kutta stepping method.
- . Depending on the final position of the charge carriers, they are associate
- The behavior of the readout chip is simulated, digitizing the signal with a

In all of these steps there are various parameters that can be customized by the information can be found in this tutorial.

A detailed user manual is provided for the software.

Tasks (in a nutshell)

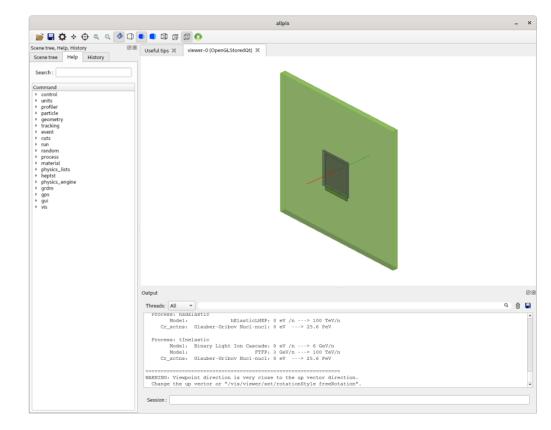
- 1. Simulate the response of a silicon pixel detector to a traversing highly re
- 2. Find a way to determine the resolution of a binary planar silicon pixel de
- 3. Check the influence on the resolution by ...
 - a. moving from a binary read out detector to a several-bit digital out
 - b. using an inclined particle incidence



Materials II

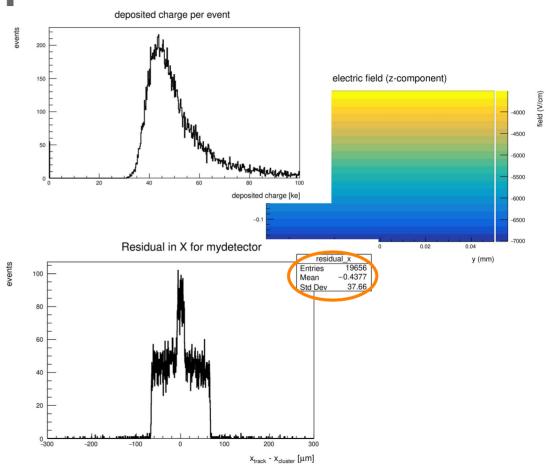
 Default configuration files for different scenarios

- Optional:
 Simulation data files with large statistics
 - Files with *PropagatedCharges* for different rotations or magnetic fields with 100 kEvents
 - Sparing out the two most time consuming simulation steps


```
ls -ltrh start
total 2.5K
 rw-r--r-- 1
                              1.6K 28. Jan 2020 animation.conf
                                80 18. Feb 2020
                                                 detector.conf
 rw-r--r--
                                                 visual.conf
                               709 18. Feb 2020
                              1.8K 19. Feb 2020 start.conf
 rw-r--r-- 1
                              1,1K 19. Feb 2020 replay.conf
 rw-r--r-- 1
  ls -ltrh simFiles/data
total 159G
                           8,8G 17. Jan 2020 EDIT Odeg OT data.root
 rw-r--r-- 1
                                              EDIT Odeg 1T data.root
 rw-r--r-- 1
                           9.1G 17. Jan 2020
                                              EDIT Odeg 2T data.root
                           9,2G 17. Jan 2020
 rw-r--r--
                           9,3G 17. Jan 2020
                                              EDIT Odeg 3T data.root
                                              EDIT Odeg 4T data.root
                           9.4G 17. Jan 2020
 rw-r--r-- 1
                                              EDIT 10deg OT data.root
                            10G 17. Jan 2020
                                              EDIT Odeg 5T data.root
 rw-r--r-- 1
                           9,4G 17. Jan 2020
                                              EDIT 5deg OT data.root
 rw-r--r-- 1
                           9,9G 17. Jan 2020
                                              EDIT 27deg 0T data.root
 rw-r--r-- :
                            11G 17. Jan 2020
                                              EDIT 30deg OT data.root
 rw-r--r-- '
                            12G 17. Jan 2020
                           9,4G 17. Jan 2020
                                              EDIT Odeg 6T data.root
 rw-r--r-- 1
                                              EDIT 35deg 0T data.root
 rw-r--r--
                            12G 17. Jan 2020
                                              EDIT 15deg OT data.root
                            11G 17. Jan 2020
                                              EDIT 20deg OT data.root
                            11G 17. Jan 2020
 rw-r--r-- 1
                                              EDIT 25deg OT data.root
 rw-r--r-- ]
                            11G 17. Jan 2020
                           9.6G 17. Jan 2020
                                              EDIT 0deg 7T data.root
 rw-r--r-- 1
```


Visual Inspection

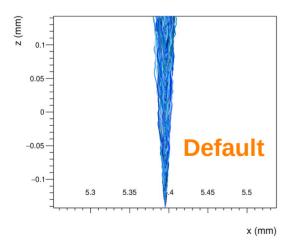
- Run with module VisualisationGeant4
- Instructions:
 - How to change detector geometry
 - How to change beam description

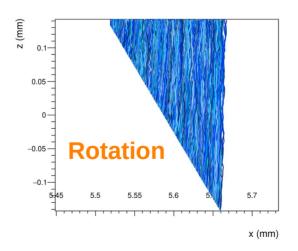


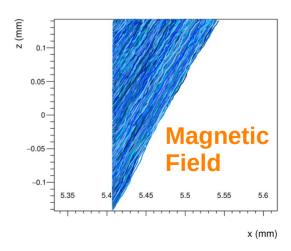
First Simulation & Spatial Resolution

- Run pre-defined setup at ...
 - Binary readout
 - 0° rotation angle
 - 0 T magnetic field

Look at graphs & discuss

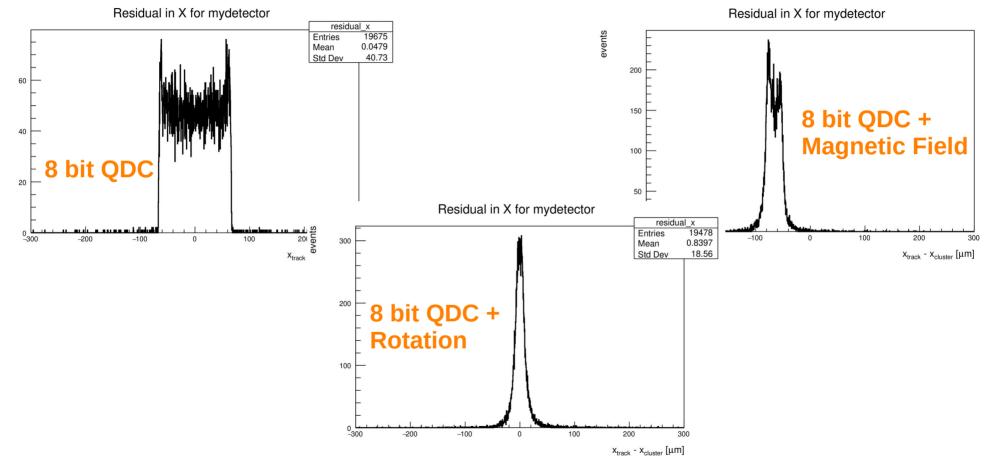

- Extract resolution from residual plot
 - Standard deviation?
 - Fit to normal distribution?





Drift-diffusion Visualisation

- Switch on output_linegraphs for GenericPropagation module
 - Vary rotation angles
 - Vary magnetic field
- Gain/deepen understanding of charge transport in silicon detectors


ap2 allpix squared

Improve the Resolution I

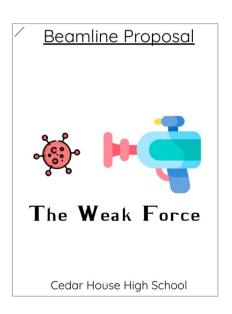
- Suggested parameters to investigate:
 - Digitization:
 - ? How does the QDC resolution (in bits) affect the detector resolution?
 - ? Does the threshold have an influence?
 - Rotation:
 - ? At which rotation angle does one achieve the best resolution? Why?
 - ? Is this influenced by the QDC resolution?
 - Magnetic field:
 - ? At which magnetic field does one achieve the best resolution? Why?
 - ? Is this influenced by the QDC resolution?
- Supported by prepared data files to speed up the simulation

Improve the Resolution II

Learning Objectives

- Command line usage (mostly for students)
- Getting to know HEP software tools (mostly ROOT, glimpse to Geant4)
- Silicon detectors ...
 - Operation principle
 - Charge transport
 - Digitisation
 - Detector resolution

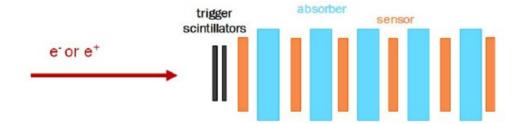
Outreach


Beamline for Schools

ap2

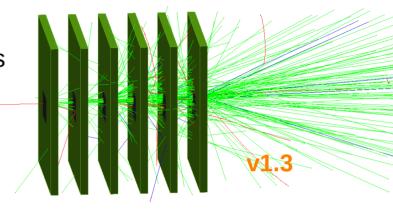
Beamline for Schools

- Worldwide competition for teams of high school students
- Teams design & propose experiments that use a particle beam and particle detectors
- First prize:
 - Trip to a research laboratory with a test beam facility
 - Realization of the proposed experiment, guided by scientists

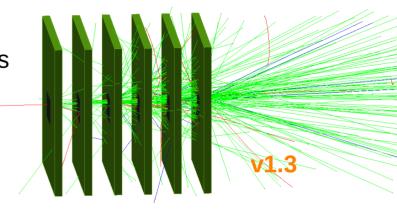

Allpix Squared as a Test Stand for Ideas

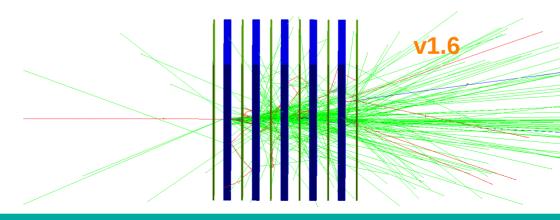
- Usage of Geant4 & Allpix Squared for ...
 - inquiring on the feasibility of experimental concepts
 - more detailed studies during the experiment preparation

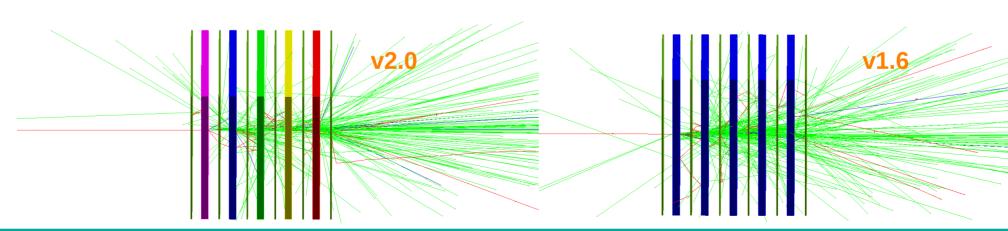
- Allpix Squared offers flexible geometry for building arbitrary setups
- Geant4 brings in the "physics under test"

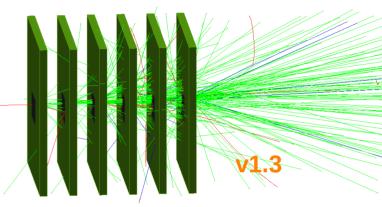

- Proposal: study the shape of electromagnetic showers
- Technique: position resolving detectors interleaved with absorber materials

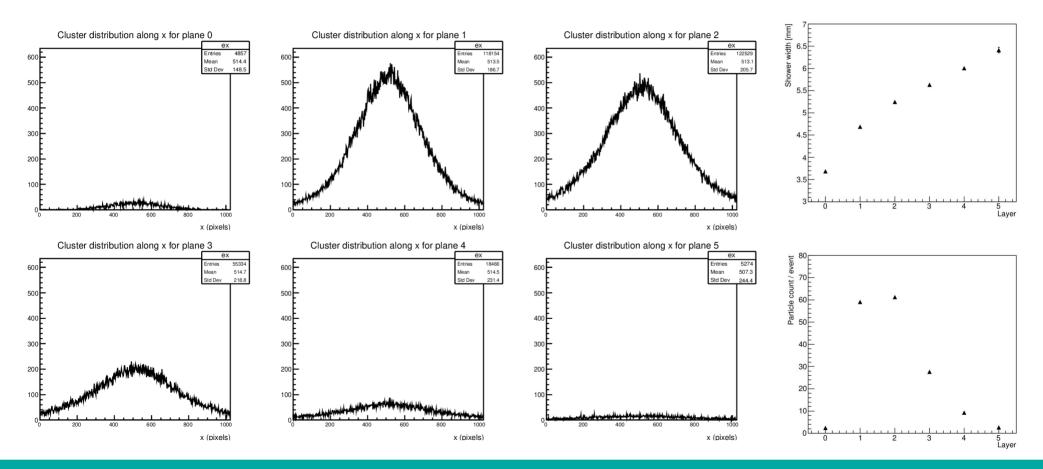
- Test of feasibility before decision
 - Are the sensors of our telescope large enough to see the lateral development?
- Preparation of the experiment
 - Dimensioning of setup & absorbers




- Started with v1.3 ...
 - Hack: Absorbers as "support structure" of sensors


- Started with v1.3 ...
 - Hack: Absorbers as "support structure" of sensors
- Since v1.6 ...
 - Passive materials are introduced ...

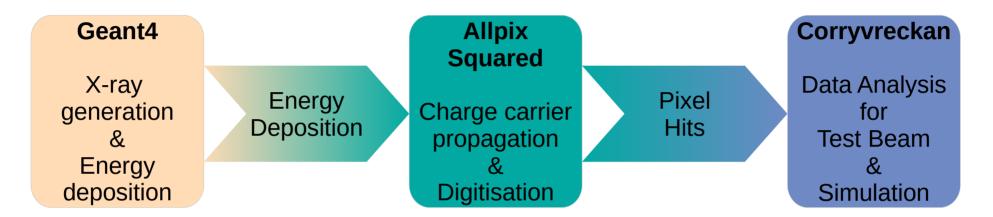




- Started with v1.3 ...
 - Hack: Absorbers as "support structure" of sensors
- Since v1.6 ...
 - Passive materials are introduced ...
- Since v2.0 ... :-)

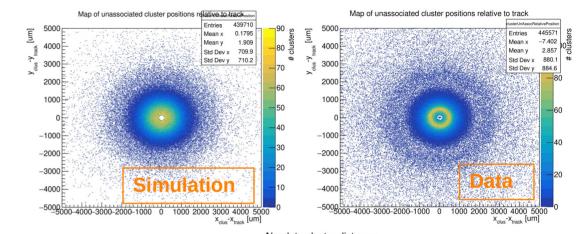
- After the experiment is before the analysis
 - Equipped the team with Allpix Squared installation
 - Taught them how to use it and how to interpret the data @BTTB8
 - → Configure & Run
 - → No C++ skills required
 - Working on a publication comparing data & simulation

Example – Transition Radiation Detection

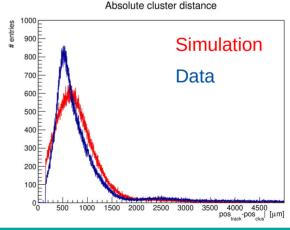

- Proposal: Study the characteristics and feasibility of transition radiation detection
- Technique: transition radiation via a stack of foils detect X-rays in silicon detectors

- Preparation of the experiment
 - Design of foil stack (foil thickness & distance)
 - Dimensioning of setup (required / possible distance between radiator and detector)
- Preparation of data analysis scheme

Example – Transition Radiation Detection



- Made use of a simulation of transition radiation available in the Geant4 examples (examples/extended/electromagnetic/TestEm10)
 - Energy deposition extracted as CSV file
- Allpix Squared modules DepositionReader and CorryvreckanWriter as interfaces
- Corryvreckan for data analysis design data analysis prior to the test beam campaign

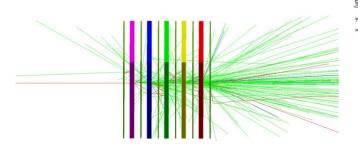


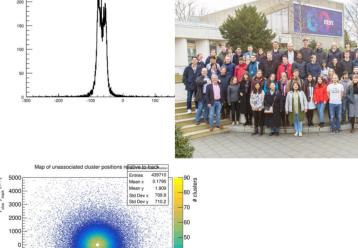
Example – Transition Radiation Detection

- Interpretation
 - Photon yield comparable for data & simulation
 - Photon distribution differs

Message ...
Simulations are enormously useful in preparation!
Measuring stuff is (luckily) unavoidable!

Conclusion


Conclusions


Developed lab course using Allpix Squared on a university to PhD level

Main goal: insight to Silicon Pixel Detectors

Use of the framework for fast feasibility studies

 Benefits from built-in flexible geometry & interface to Geant4

