
Using Allpix2 for proton computed tomography

Christopher Krause
Valerie Hohm, Kevin Kröninger, Jens Weingarten, Olaf Nackenhorst, Florian Mentzel

2. Allpix2 Workshop



Proton therapy

• Proton therapy uses the energy deposition
of protons to irradiate tumors
• Advantage: Less damage for healthy
tissue due to different energy
deposition

C. Krause | 2 / 17

[The National Association for Proton Therapy: Provision Brain Graphic]
[Provision Cares Cancer Network]

[Primo Medico: Proton Therapy Essen]



Proton computed tomography

• CT scan necessary for irradiation plan

• Using X-ray CT scans causes uncertainties
for the irradiation plan
• Safety margin increases with travel
distance
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[Harald Paganetti 2012 Phys. Med. Biol. 57 R99]



Proton computed tomography

• Track reconstruction is necessary in creating proton computed tomography scans

• Using Allpix2 to simulate proton beam and telescope
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Proton beam setup

• Telescope setup: 6 ×IBL planar sensors

• Middle sensor of triplets is rotated by 90° to increase resolution in horizontal direction

• Protons events are simulated with the Allpix2 framework [arXiv:1806.05813]
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Performance test: Energy
• Simulations with proton energies used for proton computed tomography
• Significant amount of particles can not be reconstructed due to stronger scattering
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• Smaller statistics can be countered by taking more data −→ More radiation damage
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250 MeV Protons 150 MeV Protons



Performance test: Track density

• Simulations with proton densities used for proton computed tomography

• More particles per event lead to higher amount of tracks with false cluster combinations
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25 Protons per event (200 MeV) 50 Protons per event (200 MeV)

0.6 Tracks per proton 1.4 Tracks per proton



Separating features
• Reject false tracks by implementing cuts on track features
• 100000 Protons (200 MeV), 10 protons per event
• Useful features: χ2 value, kink angles φx,3 and φx,4
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ROC curve
• Evaluate classification −→ ROC curve

• Each cut describes one point of the curve
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tpr = TP/(TP + FN)

fpr = FP/(FP + TN)

[Alex Rogozhnikov, ROC curve demonstration]
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tpr = TP/(TP + FN)

fpr = FP/(FP + TN)

[Alex Rogozhnikov, ROC curve demonstration]



Feature cuts results
• Precision: Classifying false tracks as false
• Recall: Finding all true tracks
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• How does a machine learner perform in comparison?
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Precision = TP/(TP + FP)

Recall = TP/(TP + FN)



XGBoost
• Using Boosted Decision trees from XGBoost library
• Training data set: 400000 protons (200 MeV, 10 per event)
• Test data set: 100000 protons (200 MeV, 10 per Event)
• Probability distribution of true and false tracks different
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ROC curves result

• Area Under Curve (AUC) is a good measure
to evaluate ROC curves
• Higher AUC means higher tpr, lower fpr

• AUC of the learner is higher
−→ Better classification
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tpr = TP/(TP + TN)

fpr = FP/(FP + FN)



Precision-Recall curves

• Precision is stable for most recall values
• High recall achievable

• AUC of the learner is higher
−→ Higher precision scores
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Precision = TP/(TP + FP)

Recall = TP/(TP + FN)



Summary and Outlook

• Track reconstruction of simulated low energy protons with high track density

• Low energy particles cause problems in track reconstruction due to stronger scattering
• More particles get deflected
• Standard deviation of residuals decreases

• High track densities cause a combinatorics problem
• Many unwanted false tracks decrease the resolution of the ct image

• Classification with a boosted decision tree is superior to 1D cuts on track features

Outlook:
• Advanced track finding Algorithm: Tracking Multiplet

• Further rejection of false tracks by discarding all but one tracks from associated clusters
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Backup
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Further rejection
• Rejecting all but one track from cluster on first and last plane
• Only keeping track with highest probability of being true
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• Precision increases, but FPR increases too due to the decrease of true negative tracks
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