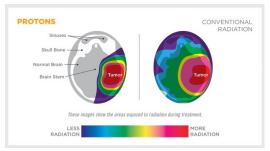
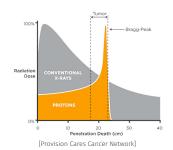


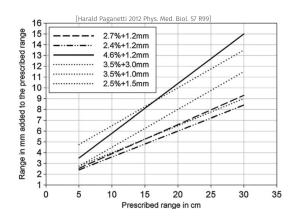
Using Allpix² for proton computed tomography


Christopher Krause

Valerie Hohm, Kevin Kröninger, Jens Weingarten, Olaf Nackenhorst, Florian Mentzel $2. \ Allpix^2 \ Workshop$


- Proton therapy uses the energy deposition of protons to irradiate tumors
 - Advantage: Less damage for healthy tissue due to different energy deposition

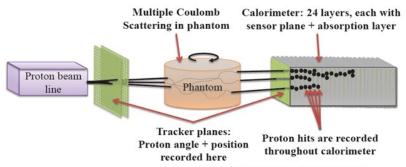
[The National Association for Proton Therapy: Provision Brain Graphic]


[Primo Medico: Proton Therapy Essen]

C. Krause | 2 / 17

Proton computed tomography

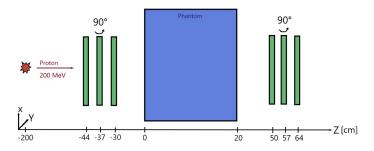
- CT scan necessary for irradiation plan
- Using X-ray CT scans causes uncertainties for the irradiation plan
 - Safety margin increases with travel distance



C. Krause | 3 / 17

Proton computed tomography

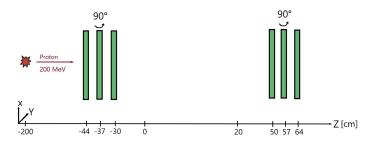
- Track reconstruction is necessary in creating proton computed tomography scans
- Using Allpix² to simulate proton beam and telescope


Helge Egil Seime Pettersen, University of Bergen

C. Krause | 4 / 17

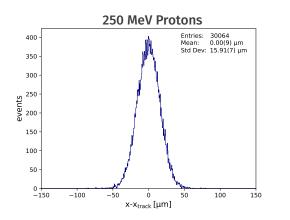
• Telescope setup: 6 ×IBL planar sensors

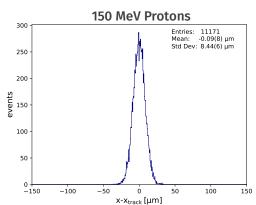
- Middle sensor of triplets is rotated by 90° to increase resolution in horizontal direction
- Protons events are simulated with the Allpix² framework [arXiv:1806.05813]


C. Krause | 5 / 17

• Telescope setup: 6 ×IBL planar sensors

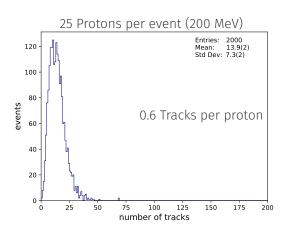
- Middle sensor of triplets is rotated by 90° to increase resolution in horizontal direction
- Protons events are simulated with the Allpix² framework [arXiv:1806.05813]

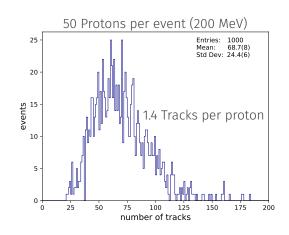



C. Krause | 6 / 17

Performance test: Energy

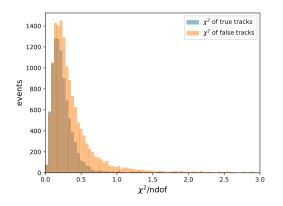
- · Simulations with proton energies used for proton computed tomography
- Significant amount of particles can not be reconstructed due to stronger scattering

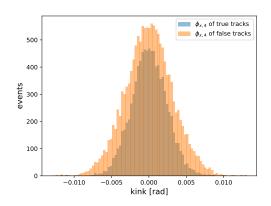



• Smaller statistics can be countered by taking more data \longrightarrow More radiation damage

Performance test: Track density

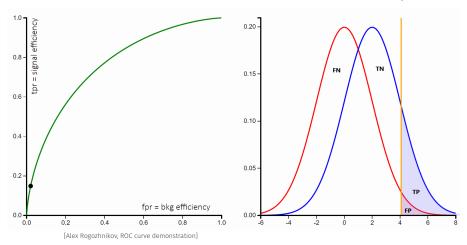
- Simulations with proton densities used for proton computed tomography
- More particles per event lead to higher amount of tracks with false cluster combinations





Separating features

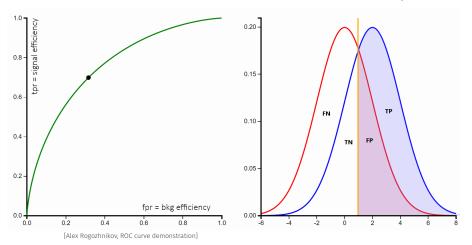
- Reject false tracks by implementing cuts on track features
- 100000 Protons (200 MeV), 10 protons per event
- Useful features: χ^2 value, kink angles $\phi_{x,3}$ and $\phi_{x,4}$



- Evaluate classification \longrightarrow ROC curve
- Each cut describes one point of the curve

tpr = TP/(TP + FN)

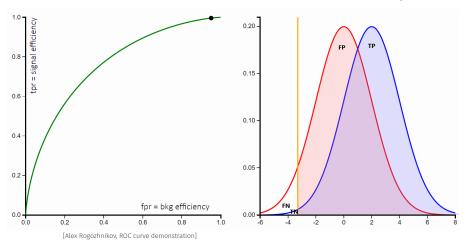
fpr = FP/(FP + TN)


C. Krause

- Evaluate classification \longrightarrow ROC curve
- Each cut describes one point of the curve

tpr = TP/(TP + FN)

fpr = FP/(FP + TN)

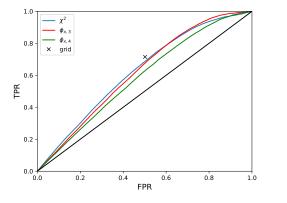


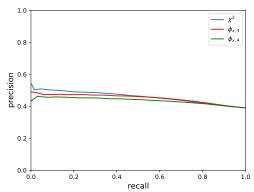
- Evaluate classification \longrightarrow ROC curve
- Each cut describes one point of the curve

tpr = TP/(TP + FN)

fpr = FP/(FP + TN)

C. Krause

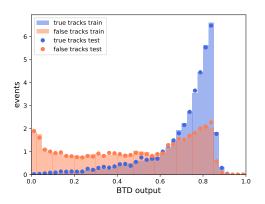


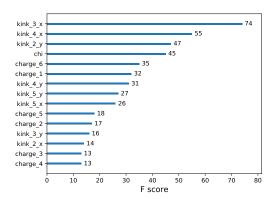

Feature cuts results

- Precision: Classifying false tracks as false
- Recall: Finding all true tracks

Recall = TP/(TP + FN)

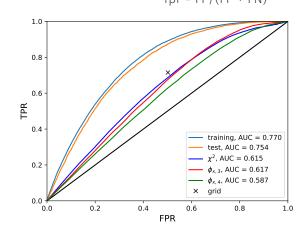
Precision = TP/(TP + FP)





• How does a machine learner perform in comparison?

- Using Boosted Decision trees from XGBoost library
- Training data set: 400000 protons (200 MeV, 10 per event)
- Test data set: 100000 protons (200 MeV, 10 per Event)
- Probability distribution of true and false tracks different

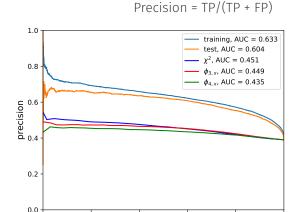


C. Krause

ROC curves result

tpr = TP/(TP + TN) fpr = FP/(FP + FN)

- Area Under Curve (AUC) is a good measure to evaluate ROC curves
 - Higher AUC means higher tpr, lower fpr
- AUC of the learner is higher
 - \longrightarrow Better classification



Precision-Recall curves

Recall = TP/(TP + FN)

- Precision is stable for most recall values.
 - High recall achievable
- · AUC of the learner is higher
 - → Higher precision scores

0.4

recall

0.6

0.2

0.0

1.0

0.8

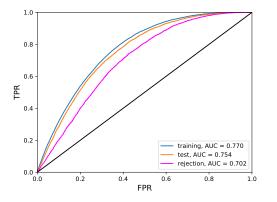
Summary and Outlook

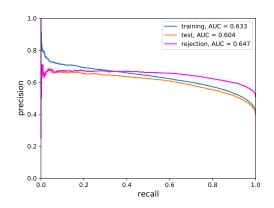
- Track reconstruction of simulated low energy protons with high track density
- Low energy particles cause problems in track reconstruction due to stronger scattering
 - · More particles get deflected
 - Standard deviation of residuals decreases
- High track densities cause a combinatorics problem
 - Many unwanted false tracks decrease the resolution of the ct image
- Classification with a boosted decision tree is superior to 1D cuts on track features

Outlook:

- · Advanced track finding Algorithm: Tracking Multiplet
- Further rejection of false tracks by discarding all but one tracks from associated clusters

C. Krause | 17 / 17


Backup


C. Krause | 18 / 17

- Rejecting all but one track from cluster on first and last plane
- Only keeping track with highest probability of being true

• Precision increases, but FPR increases too due to the decrease of true negative tracks