Multithreading Model
in Allpix Squared

Koen Wolters, Victor Sonesten, Mohamed Moanis Ali,
Simon Spannagel, Paul Schiitze, and other contributors

CE?W
3

N/ S

2nd Allpix Squared User Workshop - 15 August 2021

About me

e Involved in Allpix Squared development from the beginning

e Developed foundations of the framework as CERN
Technical Student from February - August 2017

aIlpixIsquared

o Designed fundamental framework architecture (v1.0)

o Implemented initial modules (party ported from AllPix)

e Continued to contribute to the project afterwards

o Reviewed framework modifications, and fixed several issues

o Involved in the design of the next major release v2.x

e |eft the field, currently working as Software Engineer at Google Zurich

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021 2

Outline ‘

e Improved Multithreading Model
e Design Challenges
e Performance Results

e Conclusion

This talk covers framework design fundamentals, although skipping many details,
understanding those foundations is not required to be an effective AP2 user

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021 3

Improved Multithreading Model

Modular System

e Module is an independent component with inputs (configuration, internal and/or
external data) and outputs (internal data, results and/or visualizations)

e Three main stages
o Initialization (construction)
o Executing independent events

o Finalization (destruction)

Run P~ Run P Run [...

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021 5

Module Instances

Modules are unique or detector-specific per input/output = multiple instances

Instance 1 Run Run Run
Module A y ; H H
Instance 2 Run Run Run
: : : :
Instance 1
Module B Run Run Run

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021

\/

(global) order

(local) order

Parallel Execution in First Release

Instance-based parallelisation (local)

Instance 1
Module A
Instance 2
1 1 a-’
o)
A 4 A4 5
Instance 1 ‘7,7
Module B ~ Run | Run ... §

>

(global) order
The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021

First Multithreading Model Advantages and Limitations ‘

Advantage: Requires thread pool, but thread-safety (relatively) easy to achieve MR 22

Framework: only some core logic shared between modules had to be changed
e Data should handle parallel dispatch: possible with trivial mutex locking
e Logging should support parallelism: possible with trivial mutex locking
e ROOT has a global data model: enable ROOT internal thread safety

Module: instantiations are independent, class data member variables never
accessed in parallel, execution of run function practically ‘single-threaded’

e Shared data between instances not possible

o No Geant4 support
o No global statistics (without atomics or locking)
o No global ROOT TDirectory changes, for example to write plots

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021 8

https://gitlab.cern.ch/allpix-squared/allpix-squared/-/merge_requests/22

Intermezzo: Thread Pool ‘

Note: Creation and destruction of threads has a substantial overhead, kernel-level
data has to be initialized and maintained (thread => lightweight process)

Observation: Threads per module instance per event is expensive

|dea: Reuse threads and run lightweight tasks = Thread Pool

Initialize number of threads based on number of CPU threads (cores)

Submit tasks (functions with data inputs attached) to thread-safe queue
Thread workers pop tasks (in thread-safe way) from queue and execute them
Listen to task completion signals (futures) to order tasks

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021

First Multithreading Model Advantages and Limitations ‘

Limitations: Impossible to generically achieve maximum parallel throughput

Instance-bound: Parallel speed-up is constrained by the number of instances,
typically bound by number of detectors (or input/output params)
e (Almost) no speed-up for unique modules (none without multiple input/output)
e Speed-up limited by slowest instantiation, barely any performance
improvement if only DUT simulation is expensive for example

Module-constrained: Complete modules are still executed without multithreading

(only instances are parallelized)
e No scalability for multiple computationally expensive modules

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021 10

New Multithreading Model ‘

Principle of Allpix Squared: Events are independent passages of one or multiple
particles (‘reflect the physics’)

Observation: No (direct) data dependencies between different events exists

Conclusion: Independent Monte-Carlo simulations are embarrassingly parallel

Idea: Entire events can be run in parallel

Advantage: Multithreading bound by number of events (>>> instance count)

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021 11

https://en.wikipedia.org/wiki/Embarrassingly_parallel

Parallel Execution in Second Release

Event-based parallelisation (global)

Instance 1 In
Module A p
Instance 2 In

! ! happy user! =

: I T

- o

Instance 1 %‘

In %)

Module B K}

'

(global) order
The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021 12

Let’s do it! ‘

Awesome idea! Let’s go run all those independent events in parallel (on my beefy
multi-core machine), achieve a enormous speed-up and be happy! :)

Well, unfortunately it hasn’t been that easy...

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021 13

Design Challenges

Challenge #1. Parallel Dataflow

Qld: Only parallel dispatch, no parallel data streams, input
to instances received in-order, sequential run function

New: Parallel data flow, instances receive data from
multiple events together, parallel run function

Implication: More elaborate data handling required

e Data separated per event: global =+ local messenger
e Member variables not implicitly thread-local anymore

o Need to use (function) local variables
o No binding of messages to member variables

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021 15

Intermezzo: Messenger

Note: Allpix Squared passes objects with simulation data around using messages
(initially converting simulation input to messages and converting it back at the end)

Observation: Messages need to be passed around between module instances

|dea: Abstract data passing away from users using a messenger

e Allows instance to bind to messages to listen to (source module unspecified)
e [nstances dispatch messages, messenger magic forwards to listening instance

e |nstances fetch the right data from the listening module

o QOld: (most) messages assigned to local class variables (no support for parallel data flow)
o New: messages fetched via messenger function call (supports parallel data flow)

Personal note: | consider using member variables for binding messages the most significant design flaw in the first release

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021 16

Challenge #2: Parallelisation in Geant4 ‘

Geant4 interface through RunManager (note: AP2 event » Geant4 ‘run’)
e Original version does not support parallel execution
e New MTRunManager add multithreading support

Problem: Manager uses internal thread pool, not compatible with AP2

Solution: Implement custom run manager (compatible with MT disabled)

e Creates worker-specific run managers to generate beams in parallel
e Required investigation into various complex Geant4 internals

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021 17

Challenge #3: Run Reproducibility ‘

Allowing to reproduce simulations results is important for many reasons

Problem: Event multithreading execute events in arbitrary order, no
common order of random number generation = no reproducibility

Solution Idea: Initialize fixed order seeds to individual events and generate
local random numbers per event (instance order within events is fixed)

e Use event-based seeds, having event generators is too expensive
e Testing was difficult due to STL random non-fixed =+ use Boost
e Violations especially in Geant4: we found a bug with reproducibility

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021 18

https://bugzilla-geant4.kek.jp/show_bug.cgi?id=2368

Challenge #4: Modules with Order Requirements ‘

Problem: Not every modules can be run in parallel, especially writers (and
readers) need sequential data to preserve reproducibility of events

Solution: Allow buffering of events to execute certain modules sequentially

First version uses abstraction layer await completion of earlier events
Led to intricate deadlocks due to limited buffer size (restricted RAM)
Expanded event task system to allow resubmission of buffered events
Interesting issues building task system: exception handling, and more...

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021 19

Challenge #5: Multithreading Issues in ROOT ‘

ROOT was started in a time were multithreading was not a thing yet, and
that pain continues to exist: many performance issues with parallel ROOT

Execution times for configuration with 12 detectors, increasing number of workers

e Implicit MT uses internal thread pools ~+— oldapproach —— new spproach —+~ nor00t = optml
e Global locking in Allpix (ROOT-based)]]
object creation and destruction
o Workaround for object ID handling
o Explicit locking for data races ! ot T
e Parallel histogramming

245 -

100 |-
70 |-

Execution time (min)

Multiple discussions and with ROOT team (and bugs...)

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021 20

https://root-forum.cern.ch/t/copying-trefs-and-accessing-tref-data-from-multiple-threads/29417
https://root-forum.cern.ch/t/global-lock-when-copying-trefs-with-multiple-threads/35698
https://root-forum.cern.ch/t/side-effects-of-root-enableimplicitmt/42062

Challenge #X:

Just a sneak-peek into challenges, many obstacles to overcome

Grouping:| Sync Object / Function / Call Stack

Sync Object / Function / Call Stack

Futex 0x1d7620ca

Wait Time by Utilization v
Bidle @Poor 50Ok @ideal §Over

4464.587s

* tbb::internal:: rivate_worker::run 4399.127s S
v = [TBB worker] 4399.127s N
= start_thread 4399.127s S
__clone 4399.127s
» [Unknown] 65.459s |
» tbb::internal:: rivate_server::wake_some 0.001s
¥ Mutex 0x78b03fb0 3190.089s (NN
v __gthread_mutex_lock 3186.7465 NN
v = std::lock_guard<std::mutex>::lock_guard 3186.746s (I
+ = allpix:Fi I lIpix::ROOTObjec pi 3186.7465 NN
= allpix::L :dispatchMessage « allpi s:dispatchMes{ 3186.7465 (NI
~ i gl i harge>> 794.258s D
R g DepositedCharge| 779.090s S
SES pix::| harg| 751.565s @
= allpi; pix:: i 746.168s D
S i gl ICTrack>> 115.665s |
» [Unknown] 3.343s
+ Condition Variable 0x80ce4e7f 379.305s @
* std::condition_variable::wait 378.957s @
» ROO’ ocl ROO ock 213.4955 @
» ROOT::Ti ocl ROO iteLock 165.4625
» [Unknown] 0.348s
» Mutex 0x51613677 216.704s 8
O: k= olos 205 405 605 a0s 1005

Wait Count

Object Type

1,395 | Futex

1,274
1,274
1,274
1,274
37

84
55,887
55,799
55,799
55,799
55,799
13,659
13,543
13,642
12,995
1,960
8
892,092
890,557
625,079
265,478
1,535
4,113,141

@

Futex

Futex

Futex

Futex

Futex

Futex

Mutex

Mutex

Mutex

Mutex

Mutex

Mutex

Mutex

Mutex

Mutex

Mutex

Mutex

Condition Variable
Condition Variable
Condition Variable
Condition Variable
Condition Variable
Mutex

1205
|

execute_native_thread r...

Thread

execute_native_thread_r...

execute_native_thread.r...

execute_native_thread_r...

execute_native_thread.r...

execute_native_thread r.

execute_native_thread r...

execute_native_thread r.

execute_native_thread r.

execute_native_thread r.

execute_native_thread r...

execute_native_thread r.

execute_native_thread_r...

CPU Utilization

lots of
profiling...

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021

n'l'hreadlng Threading Efficiency + ® %

Analysis Configuration ~ Collection Log Summary

Grouping:| Sync Object / Function / Call Stack

Bottom-up Caller/Callee Top-down Tree Platform

Yxa)x]

Wait Time by Utilization v

Sync Object / Function / Call Stack idie 8 Foor 80K 8 ideal @Over Wait Count Object Type

» Condition Variable 0x25af7bfa | 131.838s | @ 33,943 Condition Variab'
» Mutex Oxelea8170 22.219s | | 10,824 Mutex
» Stream 0x50defd33 3.091s 3,402 Stream
» Mutex Oxed2bd692 0.8765 2,021 Mutex
» Mutex Ox4felc92e 0.513s 1,273 Mutex
» Mutex 0x72338ead 0.377s 156 Mutex
» Mutex Ox3afa8ad6 0.195s 997 Mutex
» Mutex 0xb6377fe8 0.166s | 0 Mutex
» Stream /data/simonspa/multithreading-matrix/vtune_mt_nb_kmc-40/testbe: 0.119s 2,490 Stream
» Stream Oxbabe278c 0.078s 179 Stream
» Mutex 0x508c35e3 0.044s 173 Mutex
» Mutex 0x3c67145a 0.043s 174 Mutex
» Mutex 0x468b7bf5 0.021s 17 Mutex
» Stream /etc/pki/tls/legacy-settings 0xa21b092d 0.017s 1,092 Stream
» Stream /c .cen. 5/213.a27 0 0.016s 1 stream

» Condition Variable 0xboecf4bf 0.016s 91 Condition Variab
» Mutex 0x68c6e27b 0.0155s 42 Mutex
» Stream /c .cern. 5/z14.a29 0j 0.013s 1 Stream
» Stream /c .cern. tiveDecay5.4/23.a4 Ox4f: 0.013s 1 Stream
» Stream /c .cern. i /z11.a24 0] 0.012s 1 stream
Stream /c .cem. 5/27.a17 Ox 0.008s 1 Stream

Ie]
O: + - los 20s 40s 605 80s 1005

execute_native_thread_r...

Thread

execute_native_thread r...

execute_native_thread_r..

execute_native_thread_r...

execute_native_thread_r...

execute_native_thread r..

execute_native_thread ..

execute_native_thread_r..

execute_native_thread_r...

execute_native_thread_r...

execute_native_thread_r..

execute native thread r..

CPU Utilization

i

N
N

Results

Performance Results

event rate [Hz]

configuration from
papert

T T Illllll T T T

— 2x AMD EPYC 7402 HT @ 2.8

Illll

1

v2.0

<

—

(02}
IlIII

fS. Spannagel et al., Allpix2: A modular simulation
framework for silicon detectors,

Nucl. Instr. Meth. A 901 (2018) 164 - 172,
d0i:10.1016 /j.nima.2018.06.020, arXiv:1806.05813

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021

cores

23

https://doi.org/10.1016/j.nima.2018.06.020
https://doi.org/10.1016/j.nima.2018.06.020
https://doi.org/10.1016/j.nima.2018.06.020
https://arxiv.org/abs/1806.05813

Comparison First and Second Release

'ﬁ‘ I T T T T T T 1T | T T T T T 1T
T . i
@ —2x AMD EPYC 7402 HT @ 2.8
£ — Intel Xeon E5-2640 v4 @ 2 40GHz
S 10°[GHz -
> — —
. . () - il
configuration from i i
papert I i
7 detectors - v2.0
J b i 10x + il
speed-up can be speedup(l)
even more
significant on other 10 - vi6 -
configurations! i i
i e I
| 1 i]] Lt
1 10 10?
cores

4 cores 16 cores

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021 24

Comparison First and Second Release

l T T IIIIIIl T T T T TT1T

— 2x AMD EPYC 7402 HT @ 2.8
— Intel Xeon E5-2640 v4 @ 2.40GHz
10° — Intel Core i7-8665U @ 1.

event rate [Hz]

configuration from
papert

IIIIII

hour » minutes -

speedup(!)

10 =
ﬁ i
I 1 | | I A I | T

1 10 102
cores

64x cores
The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021 25

Conclusion

Conclusion ‘

e Move from instance-based to event-based multithreading

e Major restructure of the framework fundamentals
e Various kind of challenges to resolve on the way
e Learned: multithreading is hard

Deadlocks and contention are easy

Debugging issues is difficult (lack of reproducibility)

Impact of single contention spot can become very significant
Surprising huge performance improvements

O O O O

e Result: impressive speed-up and excellent scalability

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021 27

Thank you for your attention!

