
Koen Wolters, Victor Sonesten, Mohamed Moanis Ali,
Simon Spannagel, Paul Schütze, and other contributors

2nd Allpix Squared User Workshop - 15 August 2021

Multithreading Model
in Allpix Squared

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021

About me

● Involved in Allpix Squared development from the beginning

● Developed foundations of the framework as CERN
Technical Student from February - August 2017

○ Designed fundamental framework architecture (v1.0)

○ Implemented initial modules (party ported from AllPix)

● Continued to contribute to the project afterwards

○ Reviewed framework modifications, and fixed several issues

○ Involved in the design of the next major release v2.x

● Left the field, currently working as Software Engineer at Google Zurich

2

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021

● Improved Multithreading Model

● Design Challenges

● Performance Results

● Conclusion

This talk covers framework design fundamentals, although skipping many details,
understanding those foundations is not required to be an effective AP2 user

3

Outline

Improved Multithreading Model

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021

● Module is an independent component with inputs (configuration, internal and/or
external data) and outputs (internal data, results and/or visualizations)

● Three main stages

○ Initialization (construction)

○ Executing independent events

○ Finalization (destruction)

5

Modular System

Initialization Run Run Run ... Finalization

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021

Modules are unique or detector-specific per input/output → multiple instances

6

Module Instances

Initialization Run Run Run ... Finalization

Initialization Run Run Run ... Finalization

Initialization Run Run Run ... Finalization

Module A

Module B

Instance 1

Instance 2

Instance 1

(global) order

(lo
ca

l)
or

de
r

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021 7

Parallel Execution in First Release

Initialization Run Run Run ... Finalization

Initialization Run Run Run ... Finalization

Initialization Run Run Run ... Finalization

Module A

Module B

Instance 1

Instance 2

Instance 1

Instance-based parallelisation (local)

(global) order

(lo
ca

l)
or

de
r

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021

Advantage: Requires thread pool, but thread-safety (relatively) easy to achieve

Framework: only some core logic shared between modules had to be changed
● Data should handle parallel dispatch: possible with trivial mutex locking
● Logging should support parallelism: possible with trivial mutex locking
● ROOT has a global data model: enable ROOT internal thread safety

Module: instantiations are independent, class data member variables never
accessed in parallel, execution of run function practically ‘single-threaded’
● Shared data between instances not possible

○ No Geant4 support
○ No global statistics (without atomics or locking)
○ No global ROOT TDirectory changes, for example to write plots

8

First Multithreading Model Advantages and Limitations

MR 22

https://gitlab.cern.ch/allpix-squared/allpix-squared/-/merge_requests/22

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021

Note: Creation and destruction of threads has a substantial overhead, kernel-level
data has to be initialized and maintained (thread => lightweight process)

Observation: Threads per module instance per event is expensive

Idea: Reuse threads and run lightweight tasks → Thread Pool

● Initialize number of threads based on number of CPU threads (cores)
● Submit tasks (functions with data inputs attached) to thread-safe queue
● Thread workers pop tasks (in thread-safe way) from queue and execute them
● Listen to task completion signals (futures) to order tasks

 9

Intermezzo: Thread Pool

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021

Limitations: Impossible to generically achieve maximum parallel throughput

Instance-bound: Parallel speed-up is constrained by the number of instances,
typically bound by number of detectors (or input/output params)
● (Almost) no speed-up for unique modules (none without multiple input/output)
● Speed-up limited by slowest instantiation, barely any performance

improvement if only DUT simulation is expensive for example

Module-constrained: Complete modules are still executed without multithreading
(only instances are parallelized)
● No scalability for multiple computationally expensive modules

10

First Multithreading Model Advantages and Limitations

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021

Principle of Allpix Squared: Events are independent passages of one or multiple
particles (‘reflect the physics’)

Observation: No (direct) data dependencies between different events exists

Conclusion: Independent Monte-Carlo simulations are embarrassingly parallel

Idea: Entire events can be run in parallel

Advantage: Multithreading bound by number of events (>>> instance count)

11

New Multithreading Model

https://en.wikipedia.org/wiki/Embarrassingly_parallel

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021 12

Parallel Execution in Second Release

Initialization Finalization

Initialization Finalization

Initialization Finalization

Module A

Module B

Instance 1

Instance 2

Instance 1

Event-based parallelisation (global)

(global) order

(lo
ca

l)
or

de
r

Run

Run

Run

Run

Run

Run

Run

Run

Run

Run

Run

Run

happy user!

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021

Awesome idea! Let’s go run all those independent events in parallel (on my beefy
multi-core machine), achieve a enormous speed-up and be happy! :)

Well, unfortunately it hasn’t been that easy...

13

Let’s do it!

Design Challenges

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021

Old: Only parallel dispatch, no parallel data streams, input
to instances received in-order, sequential run function

New: Parallel data flow, instances receive data from
multiple events together, parallel run function

Implication: More elaborate data handling required

● Data separated per event: global → local messenger
● Member variables not implicitly thread-local anymore

○ Need to use (function) local variables
○ No binding of messages to member variables

15

Challenge #1: Parallel Dataflow

Run

Run

Run

Run

Run

Run

Run

Run

Run

Run

Run

Run

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021

Note: Allpix Squared passes objects with simulation data around using messages
(initially converting simulation input to messages and converting it back at the end)

Observation: Messages need to be passed around between module instances

Idea: Abstract data passing away from users using a messenger

● Allows instance to bind to messages to listen to (source module unspecified)
● Instances dispatch messages, messenger magic forwards to listening instance
● Instances fetch the right data from the listening module

○ Old: (most) messages assigned to local class variables (no support for parallel data flow)
○ New: messages fetched via messenger function call (supports parallel data flow)

16

Intermezzo: Messenger

Personal note: I consider using member variables for binding messages the most significant design flaw in the first release

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021

Geant4 interface through RunManager (note: AP2 event → Geant4 ‘run’)
● Original version does not support parallel execution
● New MTRunManager add multithreading support

Problem: Manager uses internal thread pool, not compatible with AP2

Solution: Implement custom run manager (compatible with MT disabled)

● Creates worker-specific run managers to generate beams in parallel
● Required investigation into various complex Geant4 internals

17

Challenge #2: Parallelisation in Geant4

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021

Allowing to reproduce simulations results is important for many reasons

Problem: Event multithreading execute events in arbitrary order, no
common order of random number generation ⇒ no reproducibility

Solution Idea: Initialize fixed order seeds to individual events and generate
local random numbers per event (instance order within events is fixed)

● Use event-based seeds, having event generators is too expensive
● Testing was difficult due to STL random non-fixed → use Boost
● Violations especially in Geant4: we found a bug with reproducibility

18

Challenge #3: Run Reproducibility

https://bugzilla-geant4.kek.jp/show_bug.cgi?id=2368

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021

Problem: Not every modules can be run in parallel, especially writers (and
readers) need sequential data to preserve reproducibility of events

Solution: Allow buffering of events to execute certain modules sequentially

● First version uses abstraction layer await completion of earlier events
● Led to intricate deadlocks due to limited buffer size (restricted RAM)
● Expanded event task system to allow resubmission of buffered events
● Interesting issues building task system: exception handling, and more...

19

Challenge #4: Modules with Order Requirements

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021

ROOT was started in a time were multithreading was not a thing yet, and
that pain continues to exist: many performance issues with parallel ROOT

● Implicit MT uses internal thread pools
● Global locking in Allpix (ROOT-based)

object creation and destruction
○ Workaround for object ID handling
○ Explicit locking for data races

● Parallel histogramming

Multiple discussions and with ROOT team (and bugs…)

20

Challenge #5: Multithreading Issues in ROOT

https://root-forum.cern.ch/t/copying-trefs-and-accessing-tref-data-from-multiple-threads/29417
https://root-forum.cern.ch/t/global-lock-when-copying-trefs-with-multiple-threads/35698
https://root-forum.cern.ch/t/side-effects-of-root-enableimplicitmt/42062

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021

Just a sneak-peek into challenges, many obstacles to overcome

21

Challenge #X: ….

lots of
profiling...

Results

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021 23

Performance Results

v2.0

v1.6

†S. Spannagel et al., Allpix2: A modular simulation
framework for silicon detectors,
 Nucl. Instr. Meth. A 901 (2018) 164 – 172,
doi:10.1016/j.nima.2018.06.020, arXiv:1806.05813

configuration from
paper†

https://doi.org/10.1016/j.nima.2018.06.020
https://doi.org/10.1016/j.nima.2018.06.020
https://doi.org/10.1016/j.nima.2018.06.020
https://arxiv.org/abs/1806.05813

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021 24

Comparison First and Second Release

v2.0

v1.6

10x +
speedup(!)

configuration from
paper†

7 detectors

speed-up can be
even more
significant on other
configurations!

16 cores

2x

4 cores

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021 25

Comparison First and Second Release

configuration from
paper†

hour → minutes

64x cores

~55x
speedup(!)

Conclusion

The Multithreading Model in Allpix Squared | Koen Wolters | 17th August 2021

● Move from instance-based to event-based multithreading

● Major restructure of the framework fundamentals

● Various kind of challenges to resolve on the way

● Learned: multithreading is hard

○ Deadlocks and contention are easy
○ Debugging issues is difficult (lack of reproducibility)
○ Impact of single contention spot can become very significant
○ Surprising huge performance improvements

● Result: impressive speed-up and excellent scalability

27

Conclusion

Thank you for your attention!

