# Low Energy Physics with ERLs

Jan Bernauer

Symposium on Energy Recovery Linacs, June 4, 2021

Center for Frontiers in Nuclear Science RBRC RIKEN BNL Research Center Stony Brook University

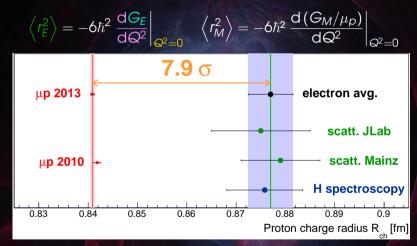
# What this is about

Many low-energy physics still unresolved.

This is a selection of highlights where ERLs will improve the science. I had to make a selection, yours might be different!

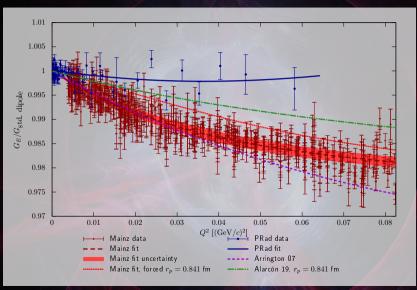
- Elastic scattering / proton radius
- Weak interaction
- Nuclear physics with rare isotopes
- Photo-nuclear physics
- Dark "photon" searches

# Elastic electron-hadron scattering

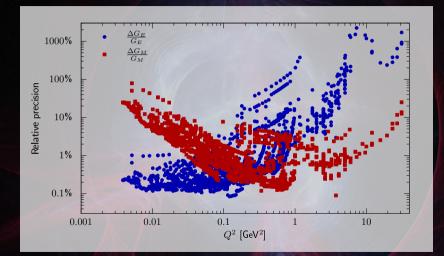

$$\frac{\left(\frac{d\sigma}{d\Omega}\right)}{\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}}} = \frac{1}{\varepsilon \left(1 + \tau\right)} \left[ \varepsilon G_E^2 \left( Q^2 \right) + \tau G_M^2 \left( Q^2 \right) \right]$$

with:

$$au = rac{\mathsf{Q}^2}{4m_{
ho}^2}, \quad arepsilon = \left(1+2\left(1+ au
ight) an^2rac{ heta_{arepsilon}}{2}
ight)^-$$


- Rosenbluth formula
- Electric and magnetic form factor encode the shape of the proton/nucleus
- Fourier transform (almost) gives the spatial distribution, in the Breit frame

# Charge radius

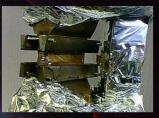



Motivated many spectroscopy (MPQ, Paris, York,...) and scattering experiments (PRAD-I/II@JLAB, ULQ2@TOHOKU, many@Mainz, AMBER@CERN, MUSE@PSI)

### Proton electric form factor



# Situation for $G_M$ is even worse




# Improvements possible at an ERL

Current gen: systematic errors dominate

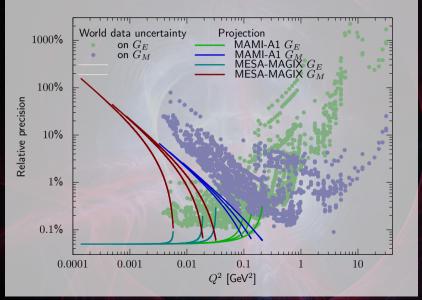
### Improvements possible at an ERL

Current gen: systematic errors dominate
 Background from target walls
 Acceptance correction for extended target




### Improvements possible at an ERL

Current gen: systematic errors dominate


- Background from target walls
- Acceptance correction for extended target
- Eliminated with cluster jet target (MAGIX@MESA)
  - point-like
  - no walls
  - but less density. ERLs to the rescue!

Rinse, repeat with D,<sup>3</sup>He,<sup>4</sup>He, ...





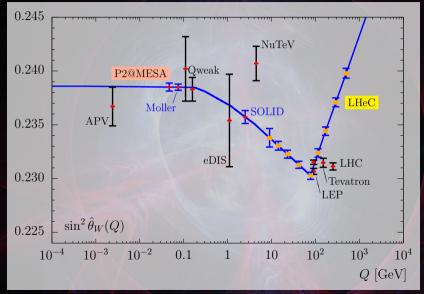
## Proton FF at MAGIX@MESA



# Weak interactions

#### Search for BSM physics via deviations from SM predictions!

$$rac{G_F}{\sqrt{2}} g^{ ext{ef}}_{ij} o rac{G_F}{\sqrt{2}} g^{ ext{ef}}_{ij} + \eta^{ ext{ef}}_{ij} rac{4\pi}{(\Lambda^{ ext{ef}}_{ii})^2}$$


# P2 at MESA

#### ...will run in non-ERL mode! Maximum luminosity with thick target.

$$A^{PV} = \frac{d\sigma_{ep}^{+} - d\sigma_{ep}^{-}}{d\sigma_{ep}^{+} + d\sigma_{ep}^{-}}$$
$$A^{PV} = \frac{-G_{F}Q^{2}}{4\pi\alpha_{em}\sqrt{2}} \left[Q_{W}(p) - F(E, Q^{2})\right]$$

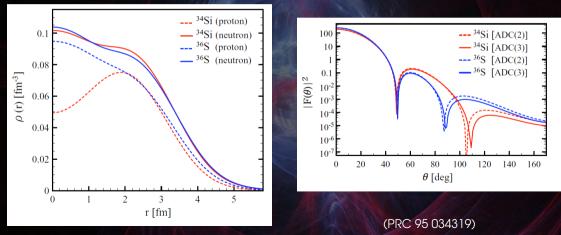
E=155 MeV,  $25^\circ < heta < 45^\circ$ ,  $Q^2=0.0045$   ${
m GeV}^2$ 

# Measurements landscape: weak mixing angle



# Nuclear physics with RIBs

#### Goal: Explore e/m structure of exotic nuclei


- Required Luminosity:  $10^{28}$  to  $10^{31}$  cm<sup>-2</sup>s<sup>-1</sup>
- Classical exp's: Low current, thick target:  $1nA@10^{19}cm^{-2} \rightarrow 10^{28}cm^{-2}s^{-1}$
- Doesn't work for RIBs
  - Density down by factor of 10<sup>11</sup>
- ► With ERL:
  - Beam current up by a factor of 10<sup>8</sup>

Not there yet. But feasible with moderate increase of ion capture capability. DESTIN+Perle@ORSAY: Can do lower end of this scale (elastic scattering).

Starting point for upgrade of ion capure rate.

#### Some examples

- Light systems: <sup>6</sup>He, <sup>8</sup>He, <sup>12</sup>Be, <sup>17</sup>C vs. <sup>8</sup>B, <sup>14</sup>O, <sup>17,18</sup>Ne (non-trivial p-n correlations)
- Bubble nuclei: <sup>34</sup>Si is supposed to have central depletion. Also: Sn, Xe
- Symmetry energy of nuclear EOS (neutron-rich vs proton-rich isotopes)

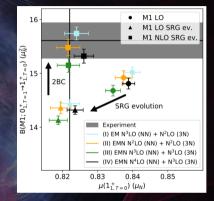


### Photonuclear: ERLs as light sources

#### Inverse Compton scattering to produce highly brilliant $\gamma$ beams

- Key reactions for stellar evolution (cross section of NRF and ( $\gamma$ , particle) )
- Technological and Commercial applications (nondestructive radionuclide assay, nuclear material control)
- Testing fundamental symmetries
- Constraining nuclear models
- New phenomena in nuclear collective modes

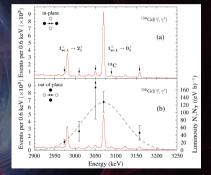
## **Fundamental Symmetries**


Parity violation through weak nucleon-nucleon interaction. For example: parity doublets  $J^{\pm}$ 

► (Beller et al.) Measurements at Hl<sub>γ</sub>s of 1<sup>± 20</sup>Ne: largest nuclear enhancement factor known today Can measure nuclear parity mixing with MeV photons with intensities achievable at an ERL.

 Ονββ: Neutrino mass requires nuclear matrix elements with high precision. Photonuclear reactions test models for calculations.

# Constraining nuclear models


- Ab initio calculations of light nuclei very advanced.
- Photonuclear Relative Self-Absorption (RSA) is strong method to measure isovector M1 exitation strength, gives two-body currents.
- Needs very high luminosities of  $10^4 \gamma/(s\Gamma_0)$



#### New phenomena in nuclear collective modes

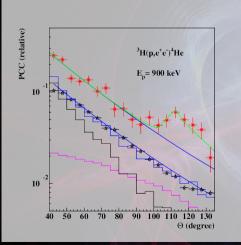
Fundamental building blocks of nuclear structure: Giant Dipole Resonance (GDR), Scissors Mode (ScM) and proton-neutron quadrupole-photon excitations.

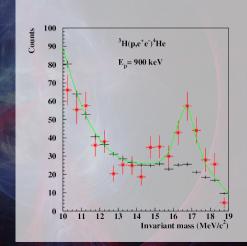
- GDR: Known for 100 years, very little known about γ-decay to ground/excited states.
- ScM: Quadrupole deformation of proton/neutron subsystems. M1 dominant, E2 hardly known. E2/M1 accessible via brilliant MeV-range photons.



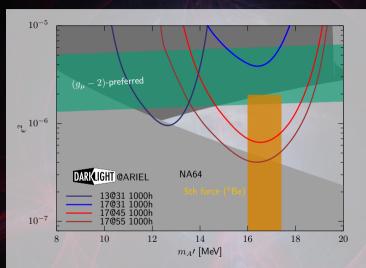
PRL 118 212502

# Dark "photon" searches


Proposed dark photon-like force carrier (or not so photon like)


- At low masses O(10-100) MeV, hard to search with classical machines
  - Thin target, or too much systematics
  - Opportunity to measure full final state
  - O(100)uA to O(10-100) mA for optimal luminosity

Several experiments planned with different kinematics, targets etc.


## Example: DarkLight@ARIEL

- DarkLight original planned for LERF, as a  $4\pi$  experiment
- But: protophobic fifth force to explain <sup>8</sup>Be, <sup>4</sup>He anomalies (ATOMKI)





### DL@ARIEL reach



Full reach only available with ARIEL in ERL mode!

# Summary

#### This is just a selection!

- Rich program in many fields
- Main ERL benefits for low-energy physics
  - Large luminosity with thin targets
  - Excellent beam quality at small energies