

High average current injectors for ERLs

Boris Militsyn STFC Daresbury Laboratory, UK

Outline

- Motivation
- Main constraints in design of high average current sources
- Current status in development of the ERL injectors
- Photocathode infrastructure
- Generation of polarised electrons
- Future perspectives
- Conclusion

Motivation

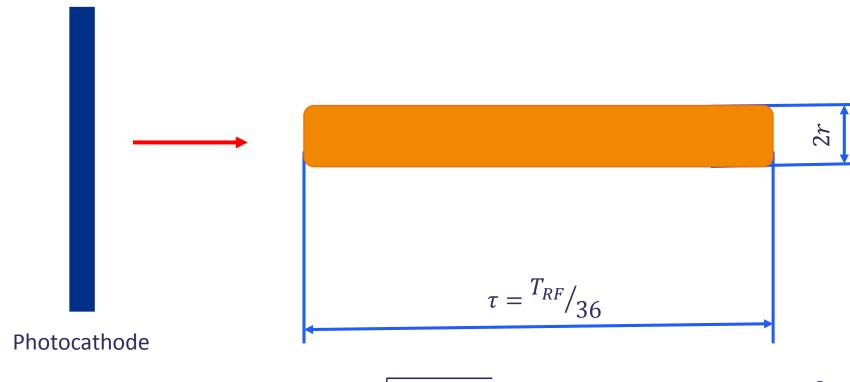
- Energy Recovery Linear Accelerators (ERL) require injectors which deliver periodic sequence of electron bunches with different parameter range:
 - Bunch charge
 - Bunch repetition rate
 - Bunch length
 - Beam emittance
 - Beam energy spread
- Common for all the sources for future ERLs is relatively High Average Current – 100 mA range

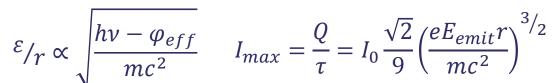
Source design constrains I. Technologies

• Minimum achievable emittance is limited by bunch charge and emission field on the photocathode and may be found as*:

$$I_{max} = \frac{Q}{\tau} = I_0 \frac{\sqrt{2}}{9} \left(\frac{eE_{emit}r}{mc^2} \right)^{3/2}, \varepsilon/_r \propto \sqrt{\frac{h\nu - \varphi_{eff}}{mc^2}} \Rightarrow \varepsilon \propto \frac{Q^{2/3}}{E_{emit}}$$

- Maximum cathode electric field achievable in RF injectors directly linked with cavity frequency
 - Breakdown field limited by Kilpatrick criterion:


$$f(MHz) = 1.64 \cdot E_0 (MV/m)^2 \cdot e^{-8.5/E_0 (MV/m)}$$


- Possible technologies providing CW operation
 - DC photoinjectors
 - Normal Conductive RF photoinjectors with a frequency not higher than about 200 MHz
 - Superconducting RF photoinjectorss
 - Thermionic injectors

* - D. Filippetto et al., Phys. Rev. ST Accel. Beams 17, 024201 (2014)

Optimal photoemission

For PERLE

$$Q = 0.5 nC$$

 $f = 800 MHz$
 $\tau = 35 ps$
 $I_{max} = 14.4 A$
 $E_0 = 5 \frac{MV}{m}$
 $E_{emit} = 5 \frac{MV}{m}$
 $r = 3.1 mm$
 $\epsilon \sim 4.4 mm \cdot mrad$

Source design constrains II. Beam emission

- Charge delivered by photoinjector
 - Photocathode material and its Quantum Efficiency (QE) and lifetime
 - Level of operational vacuum required to provide acceptable photocathode lifetime for alkali photocathodes
 - Laser pulse parameters on the cathode
 - Spatial and temporal laser profile pulse length and, as result, power density scales as $\frac{1}{f}$
 - Laser pulse energy
 - No problem for delivery by laser for Sb based photocathodes, may be an issue for Te based photocathodes
 - Laser pulse transport
 - Mirror damage due to high peak and average power density no problem for alkali based photocathodes
- No problem for thermionic injector
- Minimum dark current

DC photocathode guns, Cornell

Operates with Na₂KSb photocathodes

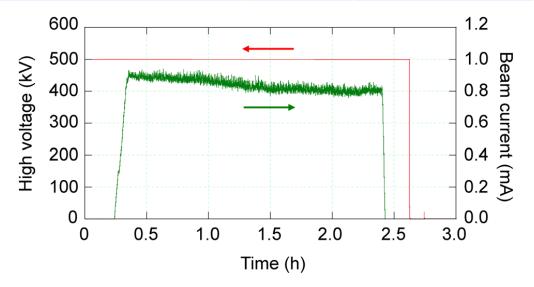
Q (pC)	$100\% \ \epsilon_n$	95% ϵ_n	Core ϵ_n	Cathode ϵ_n
20	0.22 (0.24)	0.18 (0.19)	0.09 (0.08)	0.12 (0.11)
100	0.37 (0.39)	0.30 (0.32)	0.16 (0.16)	0.24 (0.23)
300	0.78 (0.78)	0.62 (0.60)	0.30 (0.28)	0.42 (0.41)
1000	2.3 (2.3)	1.6 (1.6)	0.56 (0.58)	0.59 (0.60)
2000	6.4 (5.4)	4.4 (4.0)	1.6 (1.3)	0.88 (0.90)


Operational parameters				
Conditioning voltage	500 kV			
Operational voltage	400 kV			
Operational current	70 mA			

Rev. Sci. Instrum. **85**, 093306 (2014)

DOI: 10.1103/PhysRevSTAB.18.083401

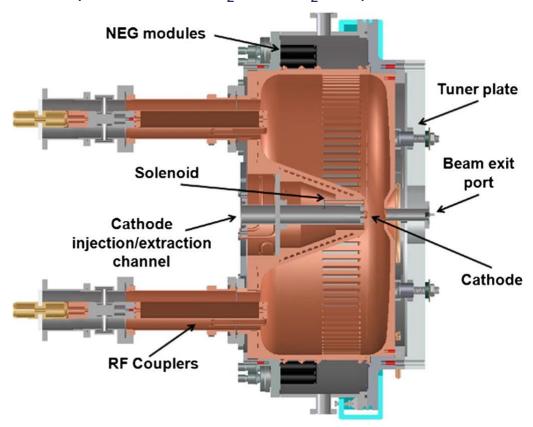
DC photocathode guns, cERL, KEK



DOI: 10.1103/PhysRevAccelBeams.22.053402

Operates with GaAs photocathodes

Parameter	Units	Value
Operation voltage	kV	350-500
Cathode field	MV/m	3-5
Average current	mA	Up to 75
Vacuum level	mbar	<10 ⁻¹¹



SRF Quarter Wave photocathode gun, BNL

NCRF VHF photocathode guns, LBNL-SLAC

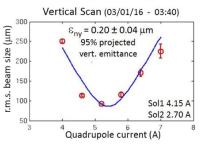
Operates with Cs₂Te or Cs₂KSb photocathodes

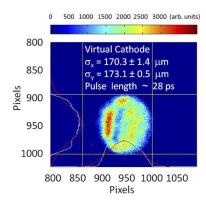
Science and Technology Facilities Council

Rev. Sci. Instrum. 90, 033304 (2019)

APEX Phase-II main parameters

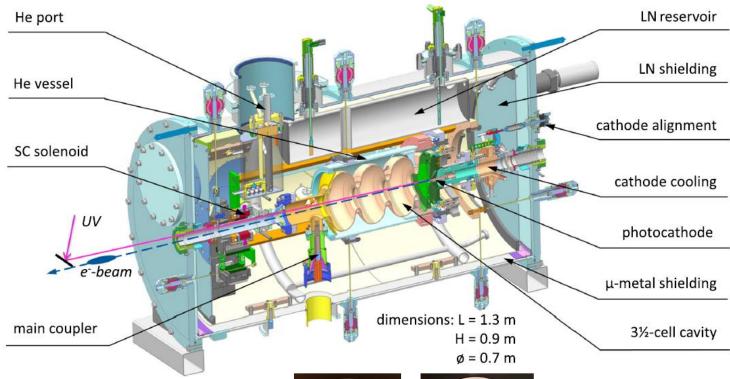
Gun frequency
Gun operation mode
Max beam energy at gun exit
Nominal operational energy
Field at the cathode at 0.75 MeV

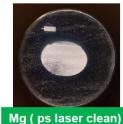

185.714 MHz CW


0.8 MeV

0.75 MeV

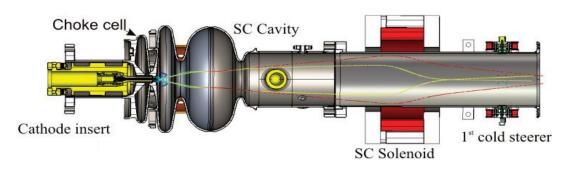
20 MV/m

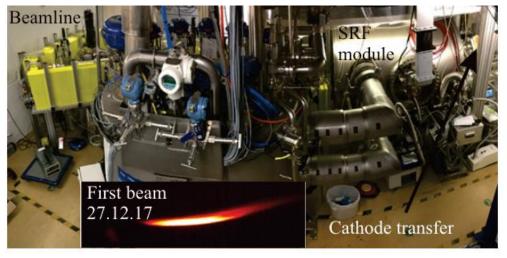



Emittance measurements of 20 pC bunches generated by LBNL Cs₂KSb photocathode

SRF elliptical cavities photocathode gun, HZDR

	Value		
Parameter	Gun I	Gun II	
Type of cavity	Elliptical 3.5 cells		
Frequency	1.3 GHz		
Gun operation mode	cw		
Beam energy at gun exit	3.0 MeV	4.0 MeV	
Acceleration gradient $E_{\rm acc}$	6 MV/m	8 MV/m	
Peak field on axis	16.2 MV/m	20.5 MV/m	
Cathode field	7 MV/m	14.5 MV/m	
dc bias at cathode	−5 kV		
Liquid He temperature	2 K		
Dynamic He load at max $E_{\rm acc}$		10 W	
Drive laser wave length	258 nm		
Photocathodes	Cs_2Te	Mg	
Quantum efficiency	1%	0.1%-0.3%	


0.2-0.4 %



Cs₂Te on Cu plug ~1%

Phys. Rev. Acc. Beams 24, 033401

SRF elliptical cavities photocathode gun, HZB

Cavities for operation with Cs₂KSb photcathodes

doi:10.18429/JACoW-IPAC2018-TUPML053

Thermionic injectors

3 GHZ 600 mA grid modulated train pulsed thermionic gun of FLARE FEL

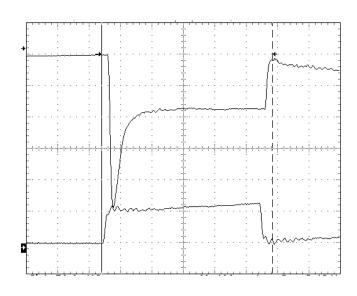
Grid modulated cathode

Courtesy Lex van der Meer, Radboud University, Nijmegen, NL

Modulation cavity

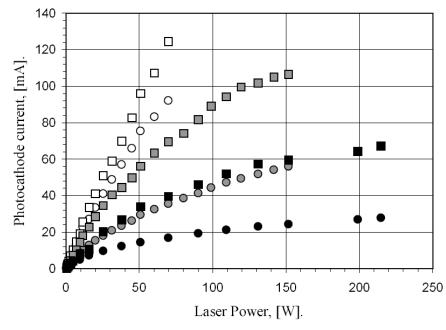
100 mA CW thermionic injector of Novosibirsk ERL on test beamline

Operation frequency 90 MHz Pulse duration 1 ns Beam energy 300 keV

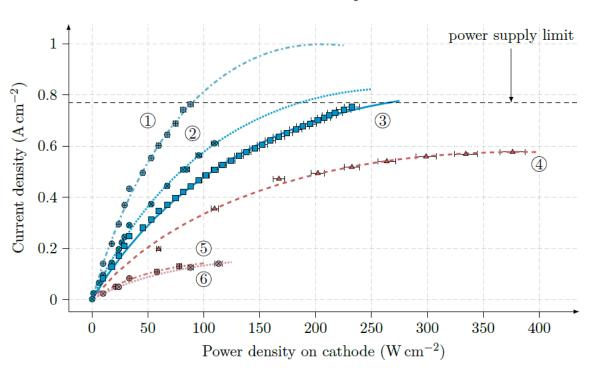

Courtesy Oleg Shevchenko BINP, RU

Photocathodes for 100 mA photoinjectors

- Photocathodes which are of interest for HEP ERL's
 - Sb-based "green" photocathodes such as Cs₃Sb, Cs₂KSb, Na₂KSb, CsNaKSb and others
 - Widely used in industry in PMT
 - Enough robust for operation with high average current
 - Laser systems are available
 - Technolohgy under development for accelerator applications
 - Optimisation of deposition procedure to obtain high QE
 - Lifetime at high average current
 - Operation at cryogenic temperature
 - Mean Transverse Energy
- GaAs based photocathode for delivery of polarised electrons
 - Very sensitive to operational vacuum and as result low charge lifetime in the range of 100's C
 - Major efforts are concentrated on improving operational performance
- Cs₂Te photocathodes
 - Very robust. Operated at DESY FLASH for 2 years
 - High QE, but require UV laser which is not available for 100 mA range


Generation of polarised electrons. Amsterdam Pulse Stretcher(AmPS), 1998

5 μs pulses with an amplitude of 120 mA of highly polarised beam has been demonstrated from 1.7 eV bandgap InGaAsP photocathode


B.L. Militsyn, ISBN 90-386-0777-6, 1998

- O Pulse current after activation
- ☐ Peak current after activation
- O Pulse current, 11 days in the gun
- Peak current, 11 days in the gun
- Pulse current, 22 days in the gun
- Peak current, 22 days in the gun

Generation of polarised electrons, UoM, 2019

S. Friederich et al 2019 J. Phys.: Conf. Ser. 1350 012045

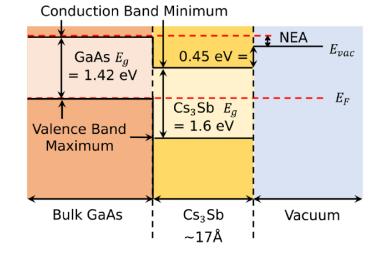
No.	QE_0	$E_0/\widetilde{\chi}$	$E_0 \; (\mathrm{meV})$	$j_{\rm p}~({\rm Acm^{-2}})$
1	2.40%	37%	26	0.58
2	1.55%	34%	24	0.39
3	1.15%	35%	25	0.41
4	0.85%	30%	21	0.20
(5)	0.50%	40%	28	0.11
6	0.39%	39%	28	0.10

10 mA current, limited by HV power supply, has been demonstrated from bulk GaAs photocathode in 400 µs pulses

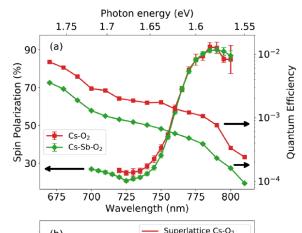
Improvement of GaAs operational performance

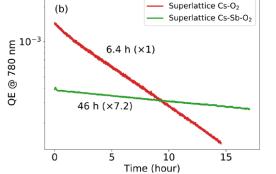
- Operational performance of GaAs photocathodes depends on means of their activation reducing work function. Earlier following procedures were used:
 - Cs photocurrent generation
 - Cs-O activation to NEA state
 - Cs-NF₃ slightly better operational performance, but don't used due to SHE restrictions

New activation procedures have been


developed

Activation with Cs₃Sb


Science and


Technology

Facilities Council

Activation with alkali metals:

J.Appl.Phys. 127, 124901 (2020)

Conclusion

- DC photocathode guns operated with Sb-based photocathode and thermionic guns can demonstrate at the moment unpolarised current of as high as 100 mA
- Potential to reach this current also have photocathode guns equipped with Sb photocathodes
 - QWR SRF gun
 - QWR NCRF gun
 - Elliptical cavity SRF gun
- There is no operational injector which can demonstrate 100 mA of polarised current, it's limited by photocathode lifetime
- Potential to deliver this current, in case of success of the program on improving GaAs lifetime by activation with Cs-alkali metal layer,
 - DC photocathode guns
 - SRF photocathode guns

Acknowledgement

- Axel Neumann, HZB
- Feng Zhou, SLAC
- Houjun Qian, DESY
- Irina Petrushina, BNL
- Kurt Aulenbacher, University of Mainz
- Luca Cultrera, BNL
- Olga Tanaka, KEK
- Rong Xiang, HZD-R

Thank you

Facebook: Science and Technology Facilities Council

Twitter:@STFC_matters

YouTube: Science and Technology Facilities Council