Multiparticle cumulants in 13 TeV p+p collisions & the proton substructure from a transport model

Zi-Wei Lin East Carolina University

The VII-th International Conference on the Initial Stages of High-Energy Nuclear Collisions: Initial Stages 2023

Outline

Introduction

Improved AMPT model & sub-nucleon geometry

Results on cumulants

Summary

Based on Xin-Li Zhao, ZWL, Liang Zheng & Guo-Liang Ma, Physics Letters B 839 (2023) 137799

Collectivity in small systems

Recent small system data at LHC exhibit large anisotropic flows; both hydrodynamics and transport can describe the flows.

Bozek & Broniowski, PLB (2013) using e-by-e viscous hydrodynamics.

Bzdak & Ma, PRL (2014) using AMPT (String Melting version).

Questions:

- Do these flow signals come from final state collectivity or initial state effects?
- from hydrodynamics or off-equilibrium transport/kinetic theory?

Collectivity in small systems

Hydrodynamics:

can reproduce 2-particle correlations "with carefully tuned parameters", but $c_2\{4\}$ cannot be reproduced & have the wrong sign.

Zhou, Zhao, Murase & Song, NPA (2020); Zhao, Zhou, Murase & Song, EPJC (2020)

- For large systems: $c_2\{4\}<0$ is expected as final state effect dominates.
- For small systems: more complicated due to nonflow and flow fluctuations.
- We use a multi-phase transport (AMPT) model in this study: has nonflow and flow fluctuations, can address non-equilibrium evolution.

Structure of AMPT (String Melting version)

Structure of improved AMPT (String Melting version)

HIJING1.0:+modernPDF/heavyFlavor/sub-nucleon minijet partons (hard), excited strings (soft), spectator nucleons

C Zhang et al, PRC (2019);

L Zheng et al, PRC (2020);

L Zheng et al, EPJC (2021)

Constant cross section σ for parton scatterings

He & ZWL, PRC (2017)

Strings melt to q & qbar via intermediate hadrons

ZPC (parton cascade)

Partons freeze out

Hadronization (new Quark Coalescence)

Extended ART (hadron cascade)

Source codes at the ECU website

https://myweb.ecu.edu/linz/ampt/

ZWL, Ko, Li, Zhang, Pal, Phys Rev C (2005);

ZWL & L Zheng, Nucl Sci Tech (2021)

Hadrons freeze out

Final particles

Improved AMPT model with sub-nucleon geometry

Overlapping protons

proton as 3 quarks
(3-quark AMPT)

proton as point particle
(Normal AMPT)

Sub-nucleon geometry for the proton:

Mäntysaari & Schenke, PRL (2016); Loizides, PRC 2016); Bozek, Broniowski & Rybczynski, PRC (2016); Bozek et al., Comp. Phys. Comm. (2019); L Zheng et al, EPJC (2021)

In 3-quark AMPT model:

we consider proton as 3 constituent quarks,
 with coordinates sampled according to

$$\rho(r) \propto e^{-r/R}$$

 partons are randomly assigned to each collision center of interacting constituent pairs

. . .

Improved AMPT model with sub-nucleon geometry

Overlapping protons

proton as 3 quarks
(3-quark AMPT)

proton as point particle
(Normal AMPT)

L Zheng et al, EPJC (2021)

Improved AMPT model with sub-nucleon geometry

Normal AMPT & 3-quark AMPT

- both reasonably describe multiplicity and p_T spectrum.
- but spatial eccentricities ε_2 are very different

Zhao, ZWL, Zheng & Ma, PLB (2023)

$c_2\{2\}$ 2-particle cumulant:

$$c_n\{2\} = \langle \langle \{2\}_n \rangle \rangle = \langle \langle e^{in(\phi_1 - \phi_2)} \rangle \rangle$$

Without η -gap:

sensitive to parton cross section σ; dependence is non-monotonous.

(b)

Normal AMPT

3-quark AMPT

 $c_2\{2\}$ 2-particle cumulant:

$$c_n\{2\} = \langle \langle \{2\}_n \rangle \rangle = \langle \langle e^{in(\phi_1 - \phi_2)} \rangle \rangle$$

Without η-gap:

sensitive to parton cross section σ ; dependence is non-monotonous.

With η -gap: nonflow effect is suppressed,

especially at low Nch.

$c_2{4}$ 4-particle cumulant:

 $\langle\langle\{4\}_n\rangle\rangle = \langle\langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)}\rangle\rangle$

 $c_n\{4\} = \langle \langle \{4\}_n \rangle \rangle - 2 \langle \langle \{2\}_n \rangle \rangle^2$

 $c_2{4}$ including its sign

is sensitive to σ ;

>0 without scatterings

3-quark AMPT model:

trend is similar to data;

 $c_2{4}<0$ at certain high Nch for certain σ ;

 $c_2{4}$ at $\sigma=0.15$ mb or 1.5mb

are closest to data

 c_2 {4} including its sign: dependence on σ is non-monotonous; very sensitive to σ . even if σ is small

Spatial cumulants $c_{\epsilon 2}$ {4} for initial partons:

$$c_{\varepsilon_n}\{2\} = \langle \varepsilon_n^2 \rangle, \ c_{\varepsilon_n}\{4\} = \langle \varepsilon_n^4 \rangle - 2\langle \varepsilon_n^2 \rangle^2$$

 $c_{\epsilon 2}\{4\}$ is closely related to $c_{2}\{4\}$:

0.15

0.10

0.00

-0.05

o₂ 0.05

(a)

50

Normal AMPT

100

$c_2{4}$: p_T -dependence is qualitatively similar to data:

Summary

An improved multi-phase transport (AMPT) model is used to study 2- and 4-particle cumulants in 13 TeV p+p collisions

- Both $c_2\{2\}$ & $c_2\{4\}$ depend sensitively & non-monotonously on (small) parton scattering cross section σ , indicating significant effects from off-equilibrium kinetic response
- Nonflow has large effects at low Nch, but is not modeled correctly
- Incorporating proton sub-nucleon structure (here with 3 quarks) gives the correct qualitative features of c₂{4} vs Nch
 & c₂{4}<0 at certain high Nch
- Data cannot be well reproduced; further work are needed on parton cross section $\sigma(T)$ as $\eta/s \propto \frac{1}{T^2\sigma}$, more general proton sub-nucleon structure.