Dependence of heavy-flavour production on event activity in small systems with ALICE

Shreyasi Acharya for the ALICE Collaboration Laboratoire de Physique de Clermont, France

International Conference on the INITIAL STAGES of High-Energy Nuclear Collisions (IS2023), COPENHAGEN 19-23 June, 2023

Heavy quarks (charm, beauty):

[Bare masses: $m_{\rm c} \sim 1.3~{
m GeV}/c^2$, $m_{\rm b} \sim 4.2~{
m GeV}/c^2$]

- $\, \triangleright \,$ produced at the early stages of the collision via hard scattering
- ▶ production cross-section calculated using factorization theorem:

$$\mathrm{d}\sigma_{AB\to C}^{\mathrm{hard}} = \sum_{a,b} f_{\mathrm{a/A}}(x_a,Q^2) \otimes f_{\mathrm{b/B}}(x_b,Q^2) \ \otimes \ \mathrm{d}\sigma_{ab\to c}^{\mathrm{hard}}(x_a,x_b,Q^2) \ \otimes \ D_{\mathrm{c}\to\mathrm{C}}(z,Q^2)$$
 Parton Distribution Function (PDF) Parton hard scattering cross section Fragmention Function (FF)

Heavy quarks (charm, beauty):

[Bare masses: $m_{
m c} \sim 1.3~{
m GeV}/c^2$, $m_{
m b} \sim 4.2~{
m GeV}/c^2$]

- $\, \triangleright \,$ produced at the early stages of the collision via hard scattering
- ▶ production cross-section calculated using factorization theorem:

$$\mathrm{d}\sigma_{AB\to C}^{\mathrm{hard}} = \sum_{a,b} f_{\mathrm{a/A}}(x_a,Q^2) \otimes f_{\mathrm{b/B}}(x_b,Q^2) \otimes \mathrm{d}\sigma_{ab\to c}^{\mathrm{hard}}(x_a,x_b,Q^2) \otimes D_{\mathrm{c}\to\mathrm{C}}(z,Q^2)$$

$$\begin{array}{c} \mathrm{Parton\ Distribution} \\ \mathrm{Function\ (PDF)} \end{array} \begin{array}{c} \mathrm{Parton\ hard\ scattering} \\ \mathrm{cross\ section} \end{array} \begin{array}{c} \mathrm{Fragmention\ Function\ (FF)} \end{array}$$

pp collisions:

- Test **perturbative QCD** calculations
- Study hadronization mechanisms in vacuum
- Baseline reference for heavy-ion studies

Heavy quarks (charm, beauty):

[Bare masses: $m_{\rm c} \sim 1.3~{
m GeV}/c^2$, $m_{\rm b} \sim 4.2~{
m GeV}/c^2$]

- > produced at the early stages of the collision via hard scattering
- ▶ production cross-section calculated using factorization theorem:

$$\mathrm{d}\sigma_{AB\to C}^{\mathrm{hard}} = \sum_{a,b} f_{\mathrm{a/A}}(x_a,Q^2) \otimes f_{\mathrm{b/B}}(x_b,Q^2) \otimes \mathrm{d}\sigma_{ab\to c}^{\mathrm{hard}}(x_a,x_b,Q^2) \otimes D_{\mathrm{c}\to\mathrm{C}}(z,Q^2)$$

$$\begin{array}{c} \mathrm{Parton\ Distribution} \\ \mathrm{Function\ (PDF)} \end{array} \begin{array}{c} \mathrm{Parton\ hard\ scattering} \\ \mathrm{cross\ section} \end{array} \begin{array}{c} \mathrm{Fragmention\ Function\ (FF)} \end{array}$$

pp collisions:

- Test **perturbative QCD** calculations
- Study hadronization mechanisms in vacuum
- Baseline reference for heavy-ion studies

In heavy-ion collisions:

ullet Heavy quarks o probe the properties of medium formed.

Heavy quarks (charm, beauty):

[Bare masses: $m_{\rm c} \sim 1.3~{
m GeV}/c^2$, $m_{\rm b} \sim 4.2~{
m GeV}/c^2$]

- ▷ produced at the early stages of the collision via hard scattering
- ▶ production cross-section calculated using factorization theorem:

$$\mathrm{d}\sigma_{AB\to C}^{\mathrm{hard}} = \sum_{a,b} f_{\mathrm{a/A}}(x_a,Q^2) \otimes f_{\mathrm{b/B}}(x_b,Q^2) \otimes \mathrm{d}\sigma_{ab\to c}^{\mathrm{hard}}(x_a,x_b,Q^2) \otimes D_{\mathrm{c}\to\mathrm{C}}(z,Q^2)$$

$$\begin{array}{c} \mathrm{Parton\ Distribution} \\ \mathrm{Function\ (PDF)} \end{array} \begin{array}{c} \mathrm{Parton\ hard\ scattering} \\ \mathrm{cross\ section} \end{array} \begin{array}{c} \mathrm{Fragmention\ Function\ (FF)} \end{array}$$

pp collisions:

- Test **perturbative QCD** calculations
- Study hadronization mechanisms in vacuum
- Baseline reference for heavy-ion studies

In heavy-ion collisions:

ullet Heavy quarks o probe the properties of medium formed.

Small systems and event activity

Unexpected features in high-multiplicity events of small collision systems:

▷ Strange baryon enhancement

[ALICE, Nature Physics 13 (2017) 535-539]

Small systems and event activity

Unexpected features in high-multiplicity events of small collision systems:

- ▷ Ridge formation
 [CMS, JHEP 09 (2010) 091]
 ▷ Anisotropic flow
 [CMS, PLB 765 (2017) 193]
- ▷ Strange baryon enhancement

[ALICE, Nature Physics 13 (2017) 535-539]

Open questions in small systems:

- ▷ Are mechanisms similar to those observed in heavy-ion collisions at play?
- $\,\vartriangleright\,$ If/how particle production mechanisms are affected by different event activities?
- ▶ What about hard probes (heavy flavour particles)!??

Small systems and event activity

Unexpected features in high-multiplicity events of small collision systems:

- ▷ Ridge formation
 [CMS, JHEP 09 (2010) 091]
 ▷ Anisotropic flow
 [CMS, PLB 765 (2017) 193]
- ▷ Strange baryon enhancement

[ALICE, Nature Physics 13 (2017) 535-539]

Open questions in small systems:

- ▷ Are mechanisms similar to those observed in heavy-ion collisions at play?
- $\,\vartriangleright\,$ If/how particle production mechanisms are affected by different event activities?
- b What about hard probes (heavy flavour particles)!??

Event activity: Related to mechanisms of particle production occurring in a collision/event.

Observable to investigate hadron production as a function of event activity:

Multiplicity: Number of particles produced in a single collision

- \rightarrow helps to understand the interplay of hard and soft processes
- ightarrow to search possible connections between small and extended interacting systems

Open heavy-flavour with the ALICE detector

Open heavy-flavour particles studied in this presentation:

$$egin{aligned} \mathbf{D^0(car{d})} &
ightarrow \mathbf{K}^-\pi^+ \ \mathbf{D^+(car{u})} &
ightarrow \mathbf{K}^-\pi^+\pi^+ \ \mathbf{D^{*+}(car{u})} &
ightarrow \mathbf{D^0}\pi^+ \ \mathbf{D^{*}_{e}(car{s})} &
ightarrow \mathbf{K}^-\mathbf{K}^+\pi^+ \end{aligned}$$

$$\begin{array}{c} {\bf \Lambda_c^+(udc)} \rightarrow {\bf pK^-}\pi^+ \\ \rightarrow {\bf pK_s^0} \end{array}$$

D, B
$$\rightarrow$$
 e + ν_e + X(s)

Non-prompt mesons \rightarrow Mesons from beauty hadron decays

ALICE, PLB 829 (2022) 137065

Meson-over-meson ratio $\mathbf{D}_{\mathrm{s}}^{+}/\mathbf{D}^{0}$ vs. p_{T} :

No dependence with multiplicity within uncertainties

 Measurements compatible with ratio of fragmentation fractions (FF) as measured from e⁺e⁻ collisions at LEP

[L. Gladilin, Eur. Phys. J. C 75, 19 (2015)]

ALICE, PLB 829 (2022) 137065

Baryon-over-meson ratio Λ_0^+/\mathbf{D}^0 vs. p_T :

- Increase from lowest to highest multiplicity with significance of 5.3 σ
- → indication of modification of hadronization mechanisms from small to high multiplicity
- Higher than value measured in e⁺e⁻ collisions
 [L. Gladilin, Eur. Phys. J. C 75, 19 (2015)]
- → fragmentation not universal

ALICE, PLB 829 (2022) 137065

Comparison with PYTHIA 8 prediction
$$\Lambda_c^+/\mathbf{D}^0$$
 vs. p_T :

- Largely underestimated with PYTHIA 8
 Monash tune
- Multiplicity trend described with PYTHIA 8 including color reconnection mechanisms beyond the leading-color approximation (CR-BLC Mode 2)
 - \rightarrow Increase of baryon over meson ratio thanks to $\mbox{\bf new}$ junctions induced by CR of $\mbox{\bf fragments}$

[Details on PYTHIA 8 in slide 15]

PYTHIA8 Monash [Eur. Phys. J. C 74 (2014) 3024],

Comparison with a statistical hadronisation model (SHM) prediction

CE-SH model: Explains the multiplicity dependence

- → Canonical-ensemble statistical hadronisation model
- → Includes additional excited baryon states predicted by the Relativistic Quark Model (RQM)

$p_{\rm T}$ -integrated $\Lambda_c^+/{\sf D}^0$:

No evidence of multiplicity dependence, from low (pp) to high (central Pb–Pb) multipliplicity

ightarrow Increasing trend in baryon/meson ratios in the $p_{\rm T}$ differential ratios which comes from a **re-distribution of** $p_{\rm T}$ that acts differently for baryons and mesons

No enhancement of p_{T} -integrated ratios in Pb-Pb with respect to to pp collisions

ightarrow Reproduced by fragmentation + recombination (Catania) and qualitatively by SHM predictions

PYTHIA8 Monash: EPJC 74 (2014) 3024 PYTHIA8 (CR-BLC Mode2): JHEP 08 (2015) 003

TAMU: PRL 124, 042301 (2020) [SHMc: JHEP 07 (2021) 035]; [CATANIA: PRC 96, 044905 (2017)

Beauty hadronization in pp

Normalised fraction of D^0 , D^+ mesons from beauty hadron decays:

New Result

ALICE, arxiv:2302.07783

PYTHIA8 Monash: EPJC 74 (2014) 3024 PYTHIA8 (CR-BLC): JHEP 08 (2015) 003

CGC: PRD 101, 094020 (2020) EPOS: PRC 89, 064903 (2014)

• Compatible with unity vs. p_T and multiplicity

- **Increasing multiplicity**
- → Similar production mechanism of c-quarks and b-quarks in events with different multiplicities.
- Model Comparison: PYTHIA 8 (Monash and CR-BLC) and CGC fairly reproduce data EPOS 3, 4 predict a different p_T dependence of the $f_{\text{non-prompt}}^{\text{mult}}/f_{\text{non-prompt}}^{\text{INEL}>0}$ ratios compared to data.

Multiplicity dependent yields of c,b ightarrow e in pp and p-Pb

$${f c,b}
ightarrow {f e:} \quad rac{{
m d}^2 N/{
m d} {m
ho}_{
m T} {
m d} \eta}{\langle {
m d}^2 N/{
m d} {m
ho}_{
m T} {
m d} \eta
angle} \quad {
m vs.} \quad rac{{
m d} N_{
m ch}/{
m d} \eta}{\langle {
m d} N_{
m ch}/{
m d} \eta
angle}$$

New Result

pp collision:

Faster than linear increasing trend, and p_T dependence, influenced by:

- → jet fragmentation affecting the measured multiplicity
- → fraction of electrons from charm and beauty hadron decays.

 $\mbox{\it High momentum partons} \rightarrow \mbox{\it accompanied by larger} \\ \mbox{\it number of fragments} \rightarrow \mbox{\it contribute to high multiplicity} \\$

Auto-correlation

Multiplicity dependent yields of c,b ightarrow e in pp and p-Pb

$$\textbf{c,b} \, \rightarrow \, \textbf{e:} \quad \, \frac{\mathrm{d}^2 \textit{N} / \mathrm{d} \textit{p}_\mathrm{T} \mathrm{d} \eta}{\langle \mathrm{d}^2 \textit{N} / \mathrm{d} \textit{p}_\mathrm{T} \mathrm{d} \eta \rangle} \quad \mathrm{vs.} \quad \, \frac{\mathrm{d} \textit{N}_\mathrm{ch} / \mathrm{d} \eta}{\langle \mathrm{d} \textit{N}_\mathrm{ch} / \mathrm{d} \eta \rangle}$$

New Result

p-Pb collisions:

Faster than linear increasing trend

However, no p_T **dependence** is observed:

- Multiplicity dependence is driven by presence of multiple binary nucleon-nucleon interaction.
- → Effect of auto-correlation is smaller compared to pp.

Multiplicity dependent yields of c,b \rightarrow e in pp and p-Pb

Comparison with model predictions:

New Result

ALICE, arxiv:2303.13349

PYTHIA8 (CR-BLC): JHEP 08 (2015) 003 EPOS 3: PRC 89, 064903 (2014)

- PYTHIA 8: Multiparton interactions (MPI) and color reconnection (CR) mechanisms
 - \rightarrow **Reproduce** self normalised yield slope and $p_{\rm T}$ dependence well
- EPOS 3: Hard pomerons exchanges (hard probe production), hydrodynamic expansion (charged-particle multiplicity) → Reproduce the data well, except for the highest p_T interval

D-meson production vs. spherocity in pp

$$S_0 = \frac{\pi^2}{4} \min_{\vec{n} = (n_x, n_y, 0)} \left(\frac{\sum_i |\vec{p}_{T_i} \times \hat{n}|}{\sum_i p_{T_i}} \right)$$

- Hint of a higher rate of high- $\rho_{\rm T}$ D mesons in low-spherocity events, expected from jet contribution to event spherocity
- ullet Similar rate of low- $p_{
 m T}$ D mesons at different spherocity

(soft events)

The trend of D-meson production remains the same for two different multiplicity regions

Conclusion

- Charm and beauty hadronization
 - → Charm fragmentation is not universal across different systems and events with different multiplicities.
 - → **b-quark production similar to** to c-quarks production mechanism
- Multiplicity dependence of production of heavy-flavour particles
 - ightarrow In pp: ullet Faster than linear increase of self-nomalised yield (SNY) of c,b ightarrow e with a $p_{
 m T}$ dependence
 - ullet Hint of higher rate of high- $p_{
 m T}$ D mesons observed in low-spherocity (jetty) events
 - ightarrow In p-Pb: Faster than linear increase of SNY of c,b ightarrow e without any $p_{
 m T}$ dependence
- Model predictions
 - ightarrow PYTHIA 8 CR-BLC reproduces the Λ_c^+/D^0 trend; SNY of c bightarrow e; normalised fraction of non-prompt D-mesons well
 - ightarrow SHM model (CE-SH) reproduces the $\Lambda_{\rm c}^+/D^0$ trend in all multiplicity ranges
 - ightarrow EPOS 3 predictions reproduce the self-nomalised yield trend of c,b ightarrow e
 - → CGC predictions captures the trend of the normalised fraction of non-prompt D-mesons

More studies needed to discriminate among different theoretical descriptions and physics mechanisms. Prospects of Run 3 in the next slide.

Prospects from Run-3

- More precise measurements possible for charm baryons and meson.
- Direct reconstruction of B mesons down to low p_T , possible due to
 - the improved resolution on the secondary decay reconstruction due to the upgraded ITS detector
 - the much larger data samples that will be collected in all collision systems
- With significantly higher statistics in Run-3, more precise differential measurements with respect to event activity possible

Back up

PYTHIA 8: Color Reconnection Junctions

Colour Reconnection (CR) scenario

- strings rearranged between partons, so as to reduce the total string length
- Partons from different PI can become connected to each other

Partons created in different MPIs do not interact each other

partons from lower p_T MPI systems are added to the dipoles defined by the higher p_T MPI system \rightarrow in a way that minimizes the total string length

Minimization of string length over all possible configurations

Reconnections of dipoles \rightarrow junctions structure produces \rightarrow enhances production of baryons

(Monash tune)

(CR Mode 'X' tune)

CR Mode 2 (Gluon-move model): Similar to default but only gluons are considered for reconnection. For each gluon all the reconnections to all MPI systems are considered. [ATL-PHYS-PUB-2017-008]

EPOS 3: Hydrodynamics

- Primary interactions
 - Gribov-Regge multiple scattering approach
 - 2 Elementary object = Pomeron = parton ladder
 - Implementing parton saturation
- Secondary interactions
 - ① Core-corona approach (to separate fluid and jet hadrons)

- 2 Viscous hydrodynamics (Israel-Stewart formulation)
- Statistical hadronization, final state hadronic cascade (Hadronic AfterBurner: UrQMD)

EPOS details, EPOS 4

- EPOS LHC: Effective flow (parameterised). Tuned to fit pp and pA data up to early LHC data
- EPOS 2: 3D+1 Ideal hydrodynamics
- SEPOS 3: 3D+1 Viscous (true) hydrodynamics + saturation
- EPOS 4: ... + Improvements leading to factorization of hard and soft scales