Initial State 2023

Probing the nuclear structure with multiparticle correlation in Xe–Xe collisions

Zhiyong Lu For the ALICE Collaboration

China Institute of Atomic Energy (CIAE)

From final state to nuclear structure

From final state to nuclear structure

Zhiyong Lu(CIAE)

nucleon density described by Woods-Saxon profile

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1 + e^{[r-R(\theta,\phi)]/a_0}},$$

$$R(\theta,\phi) = R_0(1+\beta_2[\cos\gamma Y_{2,0}+\sin\gamma Y_{2,2}] + \beta_3\sum_{m=-3}^3 \alpha_{3,m}Y_{3,m} + \beta_4\sum_{m=-4}^4 \alpha_{4,m}Y_{4,m})$$

 β_2 : overall deformation parameter a_0 : diffuseness parameter γ : triaxiality parameter

6/20/2023

We study the structure of ¹²⁹Xe at the LHC, as it is predicted to exhibit deformed and triaxial structure $(r_1 \neq r_2 \neq r_3)$.

B. Bally et al., Phys.Rev.Lett. 128 (2022) 8, 082301

 $\beta_2 = 0.2, \gamma = 30^{\circ}$

J. Jia, Phys.Rev.C 105 (2022) 4, 044905

Observables

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos n(\varphi - \Psi_n)$$

Zhiyong Lu(CIAE

- flow coefficients with 2- and 4-particle cumulants: $v_n\{2\}(n = 2, 3, 4), v_2\{4\}$
- mean elliptic flow: $\overline{v}_2 = \sqrt{(v_2 \{2\}^2 + v_2 \{4\}^2)/2}$
- elliptic flow fluctuations: $\sigma_{v_2} = \sqrt{(v_2 \{2\}^2 v_2 \{4\}^2)/2}$
- nonlinear flow modes $(v_{n,mk}, \chi_{n,mk}, \rho_{n,mk})$ (n = 4,5)
- normalized symmetric cumulants (NSC(3,2), NSC(4,2))

Measured for the first time in Xe–Xe collisions Compared to results in Pb–Pb collisions

The first systematic study on nuclear structure with various flow observables at the LHC energies!

add for Gaussian fluctuations and $\sigma_{v_2} \ll \overline{v}_2$ Y. Zhou, Phys.Rev.C 93 (2016) 3, 034909

R. S. Bhalerao et al., Phys. Lett. B742 (2015) 94–98

A. Bilandzic et al., Phys.Rev.C 89 (2014) 6, 064904

ALICE detector and data sample

Zhiyong Lu(CIAE)

1. Inner Tracking System (ITS)

• Tracking and triggering

2. V0 detector

- Triggering and event
- centrality determination
- 3. Time Projection Chamber (TPC)
- Tracking

Datasets:

Xe–Xe at 5.44 TeV Run 2 Pb–Pb at 5.02 TeV Run 2 Kinematic region: $0.2 < p_T < 3.0 \text{ GeV/c}$ $|\eta| < 0.8$

6/20/2023

Results- $v_2\{2\}$

 $\gamma = 0$

60

50

Centrality (%)

- sensitive to both β_2 and a_0
- ALICE data better described by larger β_2
- agrees with smaller a_0 below 40%, and agrees better with larger a_0 above 40%
- In 0-15%, v_2 {2}(Xe-Xe) > v_2 {2}(Pb-Pb):
 - ¹²⁹Xe is deformed, while ²⁰⁸Pb is not
 - flow fluctuations in smaller system are stronger (slide 11)

Zhiyong Lu(CIAE)

Results- v_3 {2}, v_4 {2}

- v_3 {2}, v_4 {2} are insensitive to β_2
 - $v_3 \propto \varepsilon_3$ and ε_3 is less affected by β_2
 - v_4 is dominant by linear component in central collisions, which is insensitive to β_2 (see backup slide 34)

• v_3 {2} is insensitive to a_0 , while v_4 {2} is enhanced by smaller a_0 after 35% centrality 6/20/2023 (need further confirmation)

Zhiyong Lu(CIAE)

- v_2 {4} agrees with smaller a_0 below 30% and with larger a_0 above 30%
- may expect v_2 {4}(Xe–Xe) > v_2 {4}(Pb–Pb) in the central region due to the deformation of Xe

* Results in Pb–Pb collisions are in backup slide 22 $v_2\{2\}/v_2\{4\}$ is insensitive to β_2 and a_0 (see backup slide 23)

6/20/2023

9

- For σ_{v_2}
- insensitive to a₀
- enhanced by β_2 in central region
- described by a model with $\beta_2 = 0.162$

6/20/2023

* Results in Pb–Pb collisions are in backup slide 25

flow fluctuations in smaller system are stronger

 σ_{v_2} (Xe–Xe)> σ_{v_2} (Pb–Pb) across 0-60%

centrality range

11

Results-nonlinear component of v_n

- β_2 enhances $v_{4,22}$, but not v_4 {2}
- probe smaller spatial distribution than v_4 {2} \rightarrow provide stricter constraints
- small difference caused by a_0 in peripheral region

6/20/2023

* for individual $v_{4,22}$ in Xe–Xe and Pb–Pb collisions, see backup slide 26 $v_{5,32}$ have similar conclusion but with larger uncertainties, see backup slide 27

Results-flow symmetry plane correlation $\rho_{n,mk}$

 $\rho_{4,22} = v_{4,22}/v_4$ {2}: the correlation between ψ_4 and ψ_2

Zhiyong Lu(CIAE)

• enhanced by β_2 in central region

Results-flow symmetry plane correlation $\rho_{n,mk}$

 $\rho_{4,22} = v_{4,22}/v_4$ {2}: the correlation between ψ_4 and ψ_2

Zhiyong Lu(CIAE)

• enhanced by β_2 in central region

insensitive to a_0 \rightarrow sensitivity to a_0 is cancelled by the ratio of $v_{4,22}/v_4\{2\}$

* for individual $\rho_{4,22}$ in Xe–Xe and Pb–Pb collisions, see backup slide 28 14 $\rho_{5,32}$ is in backup slide 29

Results-nonlinear coefficients $\chi_{n,mk}$

- ratio drops in central collisions
- $\chi_{4,22}$ is independent of deformation effect, while $v_{4,22}$ is sensitive to both β_2 and a_0

the sensitivitites of $v_{4,22}$ are largerly from $(V_2)^2$

6/20/2023

* for individual $\chi_{4,22}$ in Xe–Xe and Pb–Pb collisions, see backup slide 30 15 $\chi_{5,32}$ is in backup slide 31

Results-normalized symmetric cumulants

• model deviates from the data in central and peripheral region

6/20/2023

* NSC(3,2) in Pb–Pb collisions and NSC(4,2) are in slide 32 and 33

16

Sensitivity to *y*

- Discussion on previous slides missed the contribution of γ , which represents the imbalance of the radius
- According to the last AMPT simulations, none of the "standard" flow observables are sensitive to y
- New observables, i.e., $v_n p_T$ correlation can probe γ

ALICE, Phys. Lett. B834 (2022) 137393

- ✓ We present a systematic study on the centrality dependence of various flow observables in Xe–Xe and Pb–Pb collisions
 - v_2 {2}, σ_{v_2} , $v_{4,22}$, $v_{5,32}$, $\rho_{4,22}$ in Xe–Xe central collisions are enhanced by nuclear deformation
 - v_2 {2}, v_2 {4}, \overline{v}_2 , v_4 {2}, $v_{4,22}$, $v_{5,32}$ are sensitive to a_0
- New experimental measurements at the LHC enable a novel tool to probe the nuclear structure, complementary to the low-energy studies

Thanks for your attention! 18

Final state cancellation

Theorist:

- the cancellation can be seen in the PCC correlation between the initial state and final state
- Basically, the two systems have the same linear correlation between initial and final, which suggests the same final state effects.

$$Q_n = \frac{\langle v_n \varepsilon_n \cos n (\psi_n - \phi_n) \rangle}{\sqrt{\langle v_n^2 \rangle \langle \varepsilon_n^2 \rangle}}$$

Results- v_2 {2} in Pb-Pb

Results- v_2 {4} in Pb-Pb

Zhiyong Lu(CIAE)

Results- $v_2\{2\}/v_2\{4\}$

- taking the ratio of $v_2\{2\}/v_2\{4\}$, the sensitivities to β_2 and a_0 are almost cancelled
- v_2 {2} and v_2 {4} seems to have similar level of sensitivities

Results- \overline{v}_2

- uncertainties in 0-15% too large
- a_0 have a significant effect above 15%
- described by larger $a_0 = 0.57$ before 30%, by smaller a_0 above 30%

Results- σ_{v_2}

6/20/2023

Results-nonlinear component of v_n

Results-nonlinear component of v_n

 $v_{5,32}$ is the nonlinear response from $\varepsilon_2 \varepsilon_3$

- $v_{5,32}$ is sensitive to β_2 in the central region
- small difference caused by a_0 in peripheral region

Results-flow symmetry plane correlation $\rho_{n,mk}$

Results-flow symmetry plane correlation $\rho_{n,mk}$

 $\rho_{5,32} = v_{5,32} / v_5 \{2\}$

- closer to the model with no deformation but with large uncertainties
- insensitive to a₀

Results-nonlinear coefficients $\chi_{n,mk}$

Results-nonlinear coefficients $\chi_{n,mk}$

•
$$V_5 = V_5^L + V_5^{NL} = V_5^L + \chi_{5,32} V_2 V_3$$
,

- the sensitivities of $v_{5,32}$ to β_2 and a_0 are largely from V_2V_3
- V_3 is insensitive neither to β_2 nor $a_0 \rightarrow$ mainly from V_2

6/20/2023

Results-normalized symmetric cumulants

Results-normalized symmetric cumulants

Zhiyong Lu(CIAE)

NSC(4,2): the correlation between v_4^2 and v_2^2

- IP-Glasma does not describe the data points
- insensitive neither to β_2 nor a_0

Results-AMPT simulation of v_4 , $v_{4,22}$, v_4^L

6/20/2023