Probing partonic collectivity in pp and p—Pb collisions with ALICE

Wenya Wu (FDU, NBI)

Wenya Wu^{1,2} (For the ALICE collaboration) 1, Fudan University, Shanghai 2, Niels Bohr Institute, Copenhagen

Flow measurements in heavy-ion collisions

Anisotropy in azimuthal distribution of final-state particles with respect to the reaction plane:

$$\frac{dN}{d\phi} \approx 1 + 2\sum_{n=1}^{\infty} v_n \cos(n(\phi - \psi_n))$$

- Flow coefficients $v_n \rightarrow$ their correlation to the initial geometry provides detailed information on the initial conditions and transport properties of the created medium
- Well described by hydrodynamic models

Wenya Wu (FDU, NBI)

Flow of identified particles in Pb—Pb collisions

- Low- $p_{\rm T}$ region: **mass ordering** (anisotropic boost from the medium, described by hydrodynamics)
- Intermediate- $p_{\rm T}$ region: **baryon-meson** \bullet effect)

Wenya Wu (FDU, NBI)

Initial Stage 2023

Collectivity in small systems

• Double ridge structure, a sign of collectivity in heavy-ion collisions, also observed in **pp** and p-Pb collisions

Wenya Wu (FDU, NBI)

- Sizable flow observed across all collision systems (pp, p—Pb, Xe—Xe, Pb—Pb)
- Multiparticle long-range correlations confirmed collectivity in small systems

ALICE detector \rightarrow A Large Ion Collider Experiment

Inner Tracking System (ITS) • Tracking and triggering

V0 Detector

Triggering and event classification

• Forward Multiplicity Detector (FMD) Unique pseudorapidity coverage

$$-3.4 < \eta < -1.$$

 $1.7 < \eta < 5.0$

• Time Projection Chamber (TPC) Tracking and particle identification Time-of-Flight detector (TOF)

Particle identification

Non-flow treatment

 Two particle correlation function (same/mixed) events)

$$C(\Delta\phi,\Delta\eta) = \frac{1}{N_{trig}} \sum_{Pvz} \frac{SE(\Delta\phi,\Delta\eta)}{\alpha ME(\Delta\phi,\Delta\eta)}$$

- Non-flow suppression (combined):
 - Long-range correlation (large $|\Delta\eta|$ gap between particles)
 - Template fit \rightarrow correlation function can be described as a superposition of non-flow and flow:

$$Y(\Delta \phi) = FY(\Delta \phi)^{peri} + G[1 + \sum_{n=2}^{\infty} 2V_{n\Delta}cos(n\Delta \phi)]$$

Peripheral events non-flow dominated Flow signal

(TF is the best way rather than ITF and subtraction methods)

Wenya Wu (FDU, NBI)

Initial Stage 2023

ALI-PREL-345489

$p_{\rm T}$ -differential flow of identified particles in small systems

- are observed at high multiplicity ranges in p-Pb and pp
- Probing the partonic collectivity in small systems

ALI-PREL-503272

• Mass ordering (low- $p_{\rm T}$ region) and baryon-meson grouping (intermediate- $p_{\rm T}$ region)

The minimum requirements for observing partonic collectivity in a small system? A comprehensive understanding of the centrality/ N_{ch} dependence of PID differential-flow Initial Stage 2023

System comparison

- The v_2 magnitude in p—Pb collisions is larger than the one in pp collisions The larger system size and longer-lived medium in p—Pb collisions • The v_3 magnitudes are similar in both collisions
- - Less sensitive to the collision systems

Wenya Wu (FDU, NBI)

Initial Stage 2023

8 / 13

Centrality dependence of $v_2(p_T)$ with identified particles in p–Pb

ALI-PREL-543472

- Hydro-dominated mass ordering effect observed in the low $p_{\rm T}$ region
- 40-60% (p—Pb), similar to 0-20% (p—Pb), pp and Pb—Pb

Wenya Wu (FDU, NBI)

Initial Stage 2023

• **Baryon-meson grouping** at intermediate $p_{\rm T}$ region presents at all centrality classes • The "crossing" of baryons and mesons occurs at $p_{\rm T} \sim 2.5$ GeV/c for both 20-40% and

Comparison between centralities in p–Pb

ALI-PREL-543480

- PRL 123, 142301 (2019) (see slide 4)

Wenya Wu (FDU, NBI)

ALI-PREL-543492

• The absolute value of $v_2(p_T)$ decreases as centrality increases (other species see back up) • Consistent with the multiplicity-dependent integrated $v_2\{2\}$ results published by ALICE,

Ratio between meson/baryon and centralities in p—Pb

ALI-PREL-543539

- No centrality dependence was observed for the v_2 (meson)/ v_2 (baryon) ratio (left)

Wenya Wu (FDU, NBI)

• No significant $v_2(\text{PID})$ dependence observed with variation in centrality/multiplicity (right) The grouping effect does not show significant changes from 0-20% to 40-60% in p-Pb collisions. (The partonic collectivity does not change a lot to peripheral collisions in p-Pb?)

Number of Constituent Quarks (NCQ) scaling

- Baryon-meson grouping doesn't follow perfect NCQ scaling
- Similar pattern observed in Pb—Pb collisions (right bottom)

Wenya Wu (FDU, NBI)

Initial Stage 2023

 $p_{\rm T}/n_{\rm q}$ (GeV/c)

Conclusion

- Many similar observations for small and large systems;
- **Partonic collectivity** is observed in both pp and p—Pb collisions;
- *p*_T-differential flow shows slight centrality dependence in p—Pb collisions.
- Mass ordering and baryon-meson grouping effect observed from the 0-20% to the 40-60% in p—Pb \rightarrow The characteristics of behavior for partonic collectivity in p-Pb collisions are similar across different centrality ranges;

Outlooks:

- N_{ch} /centrality dependence of $v_2(p_T)$ in pp collisions;
- System comparisons in same $N_{\rm ch}$ region;

Thanks for your attention!

Wenya Wu (FDU, NBI)

Initial Stage 2023

Backup

Comparison to models for hadron V_n

- **IP-Glasma** + hydro^[1]: captures p—Pb multiplicity dep. but **the opposite trend for pp**
- **TRENTO**+Hydro^[2]: the opposite trend for both systems and overestimating.
- **GubHyd**^[3]: capture the multiplicity dep. and magnitudes with tuned model parameters.
- components?)

[1] B. Shenke et al., PRC 102, 044905 (2020), [2] J.E. Parkkila et al., PLB 835 (2022) 137485, [3] S.F. Taghavi, PShys.Rev.C 104 (2021) 5, 054906 Wenya Wu (FDU, NBI) Initial Stage 2023

• Need more insights from the theories (eg. PRC 106, 054908, necessity of non-equilibrium

Ratio between meson/baryon and centralities in p-Pb

Wenya Wu (FDU, NBI)

Initial Stage 2023

NCQ scaling and broken (40-60% p-Pb as function of KET/ n_a)

ALI-PREL-543534

Wenya Wu (FDU, NBI)

NCQ scaling and broken (20-40% p-Pb as function of p_T/n_a)

ALI-PREL-543521

Wenya Wu (FDU, NBI)

ALI-PREL-543790

Initial Stage 2023

NCQ scaling and broken (20-40% p-Pb as function of KET/ n_a)

ALI-PREL-543525

Wenya Wu (FDU, NBI)

Initial Stage 2023

Comparison between centralities in p-Pb

ALI-PREL-543629

Wenya Wu (FDU, NBI)

Initial Stage 2023

ALI-PREL-543484

