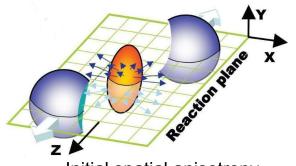
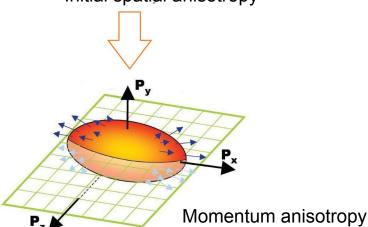
Elliptic flow fluctuations of charged and identified hadrons relative to the participant and spectator planes in heavy-ion collisions with ALICE

Michael Rudolf Ciupek (Ruprecht Karl University of Heidelberg) for the ALICE collaboration

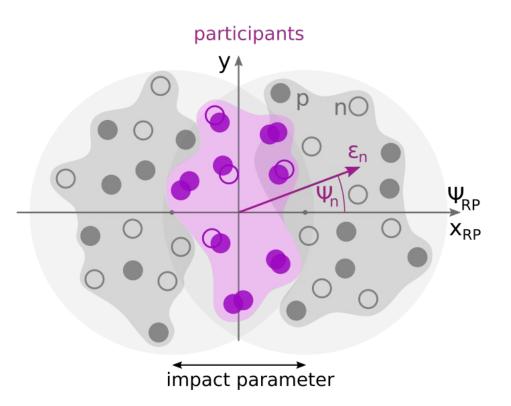
20.06.2023

Initial Stages 2023 Copenhagen





Initial spatial anisotropy


• Anisotropies of final-state particles with respect to the reaction plane Ψ_{RP} described by:

$$\frac{dN}{d\phi} = 1 + \sum_{n=1}^{\infty} v_n cos(n(\phi - \Psi_{RP}))$$

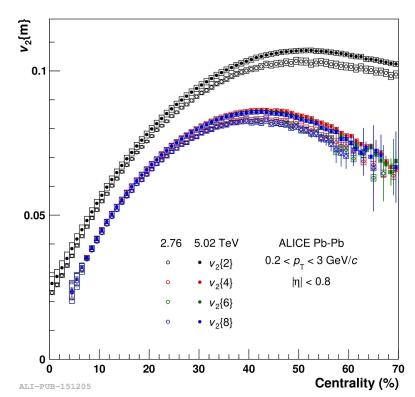
 Flow coefficients v_n sensitive to the initial state and QGP properties.

Anisotropies of final-state particles with respect to the reaction plane $\Psi_{\mbox{\tiny RP}}$ described by:

$$\frac{dN}{d\phi} = 1 + \sum_{n=1}^{\infty} v_n cos(n(\phi - \Psi_{RP}))$$

- Flow coefficients v_n sensitive to the initial state and QGP properties.
- Event-by-Event fluctuations of the initial state quantified by eccentricities ($\varepsilon_{\rm p}$) and symmetry

planes (
$$\Psi_{_{
m n}}$$
) $\epsilon_n=rac{\int r^n e^{in\Phi}
ho(r,\Phi)r{
m d}r{
m d}\Phi}{\int r^n
ho(r,\Phi)r{
m d}r{
m d}\Phi}$


Flow fluctuations with respect to participant plane for charged hadrons

Elliptic flow using multi-particle cumulant:

$$c_2\{2\} = \langle\langle 2\rangle\rangle \qquad v_2\{2\} = \sqrt{c_2\{2\}}$$

$$c_2\{4\} = \langle\langle 4\rangle\rangle - 2\langle\langle 2\rangle\rangle^2 \qquad v_2\{4\} = \sqrt[4]{-c_2\{4\}}$$

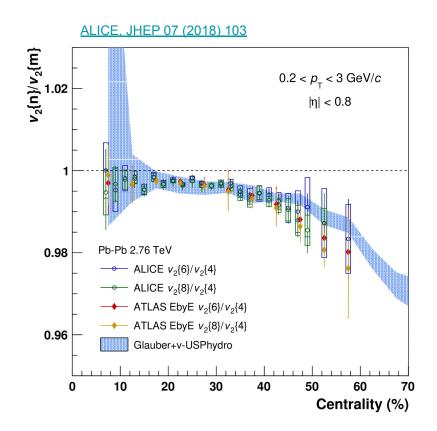
$$\langle 2\rangle = \langle\cos(2(\phi_1-\phi_2))\rangle$$

$$\langle 4\rangle = \langle\cos(2(\phi_1+\phi_2-\phi_3-\phi_4))\rangle$$
 direct cumulants: A. Bilandzic, et al., PRC 83 (2011) 044913

ALICE, JHEP 07 (2018) 103

Flow fluctuations with respect to participant plane for charged hadrons

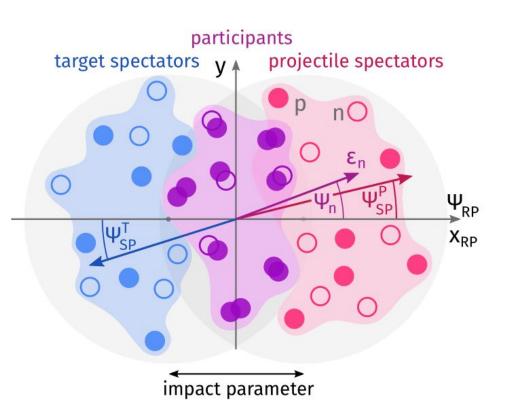
Elliptic flow using multi-particle cumulant:


$$c_2\{2\}=\langle\langle2
angle
angle \ v_2\{2\}=\sqrt{c_2\{2\}} \ c_2\{4\}=\langle\langle4
angle
angle -2\langle\langle2
angle
angle^2 \ v_2\{4\}=\sqrt[4]{-c_2\{4\}} \ \langle2
angle=\langle\cos(2(\phi_1-\phi_2))
angle \ \langle4
angle=\langle\cos(2(\phi_1+\phi_2-\phi_3-\phi_4))
angle \ {
m direct\ cumulants:\ A.\ Bilandzic,\ et\ al.\ PRC\ 83\ (2011)\ 044913}$$

- Shape of flow fluctuations:
 - Bessel-Gaussian model (BGM)^[1]:

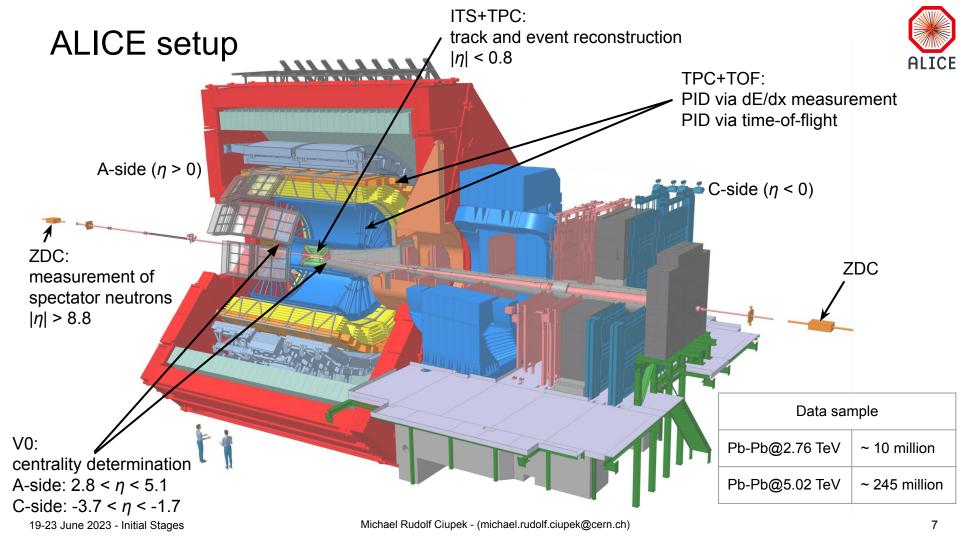
$$v_2\{2\}>v_2\{4\}=v_2\{6\}=v_2\{8\}$$

• Elliptic power model (EPM)^[2]:


$$v_2\{2\} > v_2\{4\} > v_2\{6\} > v_2\{8\}$$

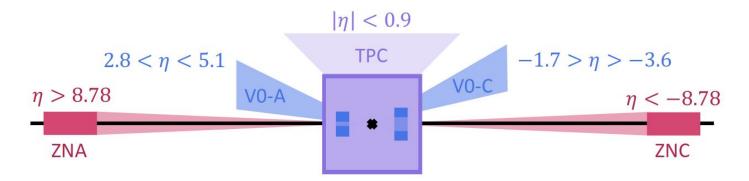
^[1] S. Voloshin, et al., PLB 659 (2008) 537

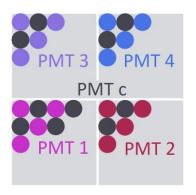
Initial state fluctuations and spectators



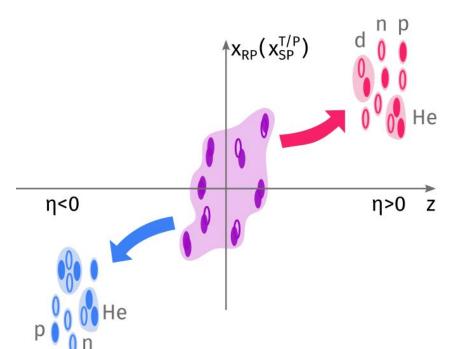
 Spectators decouple very early from participants before QGP formation

Proxy for the collision geometry


$$\Psi_{ ext{SP}}^{ ext{P}}pprox\Psi_{ ext{SP}}^{ ext{T}}pprox\Psi_{ ext{SP}}pprox\Psi_{ ext{RP}}$$


- Elliptic flow wrt to Ψ_{SP} allows to study:
 - Initial state models
 - $v_{2}\{2\} > v_{2}\{4\} = v_{2}\{\Psi_{SP}\} = v_{2}\{\Psi_{RP}\}$

Spectator measurements in ALICE: neutron ZDCs^[1]

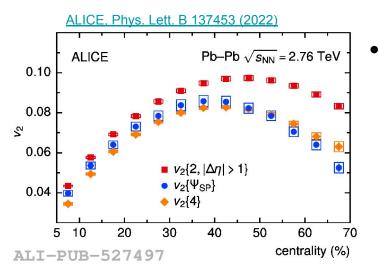


- Measurement of energy deposition by the spectator neutrons using the four ZDC channels
- Proton ZDCs are not used for the analysis
- Charged fragments with Z>1 are deflected in the LHC
 - $\rightarrow\!\text{Decorrelation}$ between Ψ_{RP} and Ψ_{SP}

Elliptic flow with respect to the spectator plane $v_2\{\Psi_{SP}\}$

 Ψ_{SP} estimated from the outward deflection of neutron spectators (directed flow)^[1]

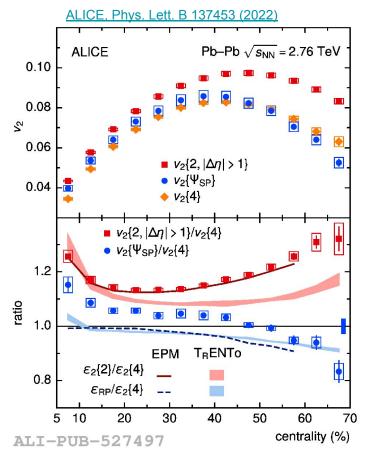
 $v_2\{\Psi_{SP}\}$ mixed harmonic method^[1,2]


$$\left\{ v_{\mathrm{SP}}
ight\} = rac{2}{3} \left(rac{\langle xXX
angle}{\langle XX
angle} - rac{\langle xYY
angle}{\langle YY
angle} + \sqrt{\left| rac{\langle yYX
angle \langle yXY
angle}{\langle XX
angle \langle YY
angle}
ight|}
ight)$$

Notations:
$$\langle xXX
angle = \langle q_{2,x}^{
m TPC}Q_{1,x}^{
m ZNA}Q_{1,x}^{
m ZNC}
angle$$

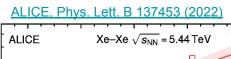
19-23 June 2023 - Initial Stages

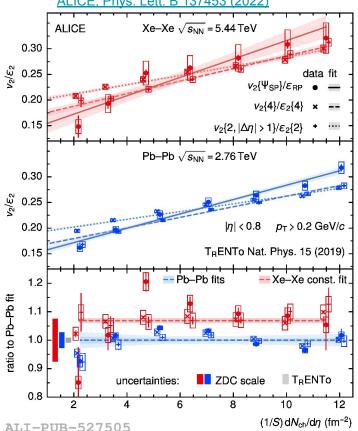
v_2 fluctuations wrt. spectators for charged hadrons



- In a leading order: $v_2\{\Psi_{SP}\} \approx v_2\{\Psi_{RP}\} \approx v_2\{4\}$
 - Close to the Bessel-Gaussian shape of flow fluctuations

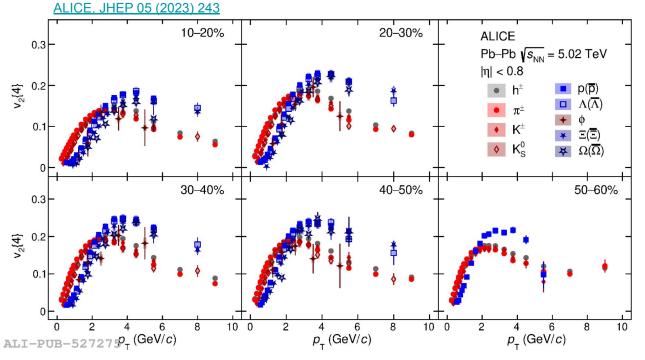
v_2 fluctuations wrt. spectators for charged hadrons




- In a leading order: $v_2\{\Psi_{SP}\} \approx v_2\{\Psi_{RP}\} \approx v_2\{4\}$
 - Close to the Bessel-Gaussian shape of flow fluctuations

- $v_2\{\Psi_{SP}\}/v_2\{4\}$ ratio for charged hadrons deviates from eccentricity ratios predicted by the initial state models:
 - Effects of hydrodynamic evolution
 - Incomplete initial state model
 - Decorrelation between spectator ($\Psi_{\rm SP}$) and reaction ($\Psi_{\rm RP}$) planes

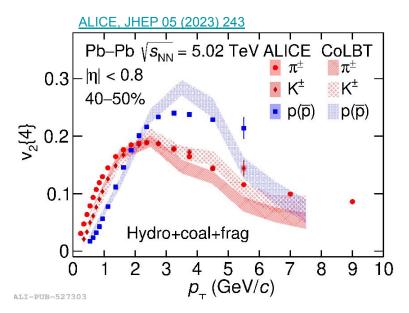
System size dependence of v_2/ε_2 scaling

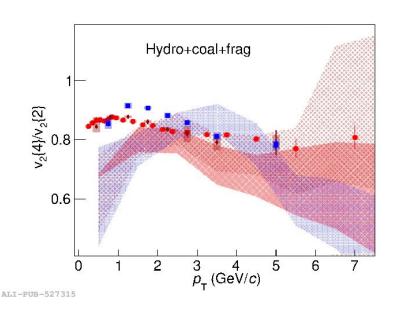


- Individual fit to each v_2/ε_2 ratio for participant and spectator planes
 - Scaling well described by a linear fit

- Difference of $(7.0 \pm 0.9)\%$ observed between Pb-Pb and Xe-Xe
 - Sensitive to details of the initial state and QGP viscosity

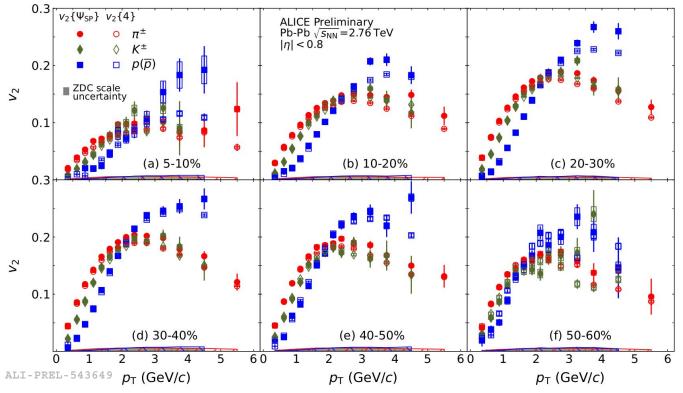
Particle-type dependence flow fluctuations with respect to the participant plane




Particle-type dependence sensitive to hydrodynamical evolution of QGP and hadronization:

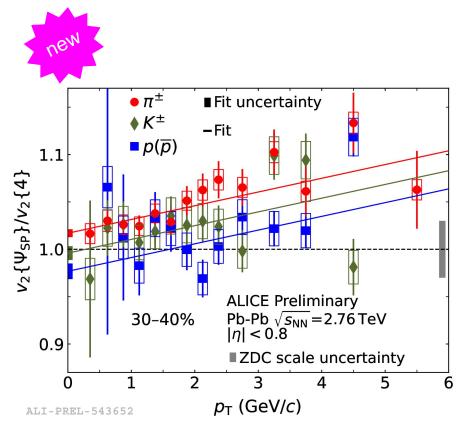
- Low p_{τ} region: mass ordering
- Intermediate p_{τ} region: baryon-meson ordering

Particle-type dependence of flow fluctuations with respect to the participant plane



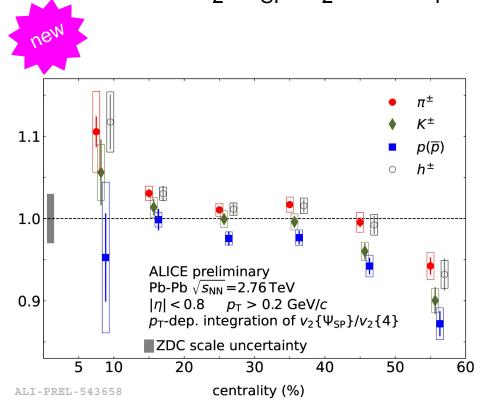
- v_2 {4} and v_2 {4}/ v_2 {2} compared with predictions of CoLBT^[1] which combines:
 - Hydrodynamic expansion of QGP
 - Hadron production via quark coalescence and fragmentation
- Model comparison shows the importance of final-state effects for both v_2 {4} and v_2 {4}/ v_2 {2}

Particle-type dependence of elliptic flow with respect to spectator plane



- Elliptic flow wrt to spectator plane $v_2\{\Psi_{\rm SP}\}$ exhibits similar features as $v_2\{4\}$
- In a leading order: $v_2\{4\} \approx v_2\{\Psi_{\rm SP}\}$ for all particle types similar as for charged hadrons

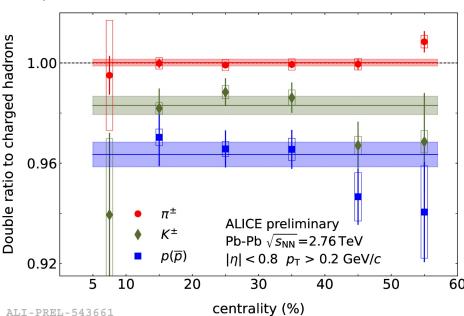
Particle-type dependence of elliptic flow with respect to spectator plane



Fit procedure used to extract particle-type dependence as a function of centrality:

- Linear fit $(p_0 + p_1 \cdot p_T)$ in the range of $p_T = (0.2, 3.0) \text{ GeV/}c$
- Slope parameter (p₁) is fixed by the linear fit to the charged hadrons (reduces stat. uncertainties)
- p_0 parameter is the intercept of $v_2\{\Psi_{SP}\}/v_2\{4\}$ at $p_T = 0$
- Extracted for all centrality classes

Intercept of $v_2\{\Psi_{SP}\}/v_2\{4\}$ at $p_T=0$ as function of centrality



- Intercept show similar shape as a function of centrality for all particle species:
 - → Initial state fluctuation
- Particle type dependent splitting:
 - → Hydrodynamic evolution
 - → Hadronization

Double ratio of intercept as function of centrality

Splitting quantified by double ratio to that of charged hadrons via a constant fit vs p_{T} :

- Particle-type splitting found to be 3.6% (1.6%)
 between pions and protons (kaons)
- Initial state effects should cancel in the double ratio

Non-zero contribution from the QGP evolution & hadronization to the measured $v_2\{\Psi_{\rm SP}\}/v_2\{4\}$ double ratio. Important for quantifying effects of the initial state when comparing eccentricity and v_2 ratios

Summary

Collective flow measurements with respect to the spectator plane provide new insights on initial stage models and set new constraints on QGP evolution and hadronization processes!

- Charged hadrons:
 - Deviations of measurements to model prediction may indicate an incomplete description of initial state fluctuations
 - \circ Difference of v_2/ε_2 between Pb–Pb and Xe–Xe sensitive to details of the initial state and QGP viscosity

- Identified hadrons:
 - Particle-type dependence sensitive to QGP evolution and final state effects as shown by comparison of $v_2\{2\}/v_2\{4\}$ with model (CoLBT)
 - Observation of a particle-type dependent splitting in $v_2\{\Psi_{SP}\}/v_2\{4\}$ suggest a non-zero contribution from QGP evolution & hadronization processes and is important for understanding deviation between eccentricity and flow ratios