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Hydrodynamization in Heavy Ion Collisions
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Hydrodynamization in Heavy Ion Collisions

e How can we describe early out-of-equilibrium pre-hydro stage?
o QCD Kinetic Theory
o Holography
o Glasma

e Many descriptions have been shown to have “attractor” solutions
o See e.g. Kurkela, van der Schee, Wiedemann, Wu, arXiv:1907.08101

e Adiabatic Hydrodynamization framework: understand attractors in
kinetic theory as the time-dependent ground state of an evolving

effective Hamiltonian, long before hydrodynamization

o Brewer, Yan, Yin, arXiv:1910.00021
o Brewer, Scheihing-Hitschfeld, Yin, arXiv:2203.02427
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Kinetic Theory and Rescaling

p, Of P, Of IN?
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collision kernel assuming small-angle scattering

whereq-ffl—l—f ) and \ = fp

e Goal: dynamically rescale fand p to write theory as H .t w = —0,w
in such a way that H,;; is gapped and w decays to a ground state
“attractor”

e System well described by adiabatic approximation if
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Kinetic Theory and Rescaling
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e Goal: dynamically rescale fand p to write theory as H .t w = —0,w
in such a way that H,;; is gapped and w decays to a ground state
“attractor”

collision kernel assuming small-angle scattering

e System well described by adiabatic approximation if
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Kinetic Theory and Rescaling

o y O IN? >
LBl = Eia[f) (@VES + AV, - (S + 1))

e Previous work: longitudinally expanding, highly occupied
approximation (early times) [BSY arXiv:2203.02427]

o Found analytic expression eigenstates; scaling such that 0_ |w0 >—= )

e One step forward, one step back: keep full small-angle collision
kernel, but neglect longitudinal term and take f < 1.
e Suppose: f(p,7) = A(T)w(p/D(7),7) = A(T)w(X,T) . Then

A
x*D

H.fiw = —0,w = %w — %Xﬁxw = ;?(Zxaxw + x2 2 w) — (2xw + x* 0, w)
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Kinetic Theory and Rescaling
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previous work: simplified collision kernel

e Previous work: longitudinally expanding, highly occupied
approximation (early times) [BSY arXiv:2203.02427]

o Found analytic expression eigenstates; scaling such that 0_ |w0 >—= )

e One step forward, one step back: keep full small-angle collision
kernel, but neglect longitudinal term and take f < 1.
e Suppose: f(p,7) = A(T)w(p/D(7),7) = A(T)w(X,T) . Then

A
x*D

H.fiw = —0,w = %w — %Xﬁxw = ;?(Zxaxw + x2 2 w) — (2xw + x* 0, w)
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Kinetic Theory and Rescaling

o of
+ o)

for now: neglect
longitudinal expansion

e Previous work: longitudinally expanding, highly occupied
approximation (early times) [BSY arXiv:2203.02427]

1 (aVEf+ AV, - (BF(1+ 1))

o Found analytic expression eigenstates; scaling such that 0_ |w0 >—= )

e One step forward, one step back: keep full small-angle collision
kernel, but neglect longitudinal term and take f < 1.

e Suppose: f(p,7) = A(T)w(p/D(7),7) = A(T)w(x,T) . Then

Heppw = —0,w = % — Dx8 w — ;&i)"’ (2x0yw + x*02w) —

?D (2xw + x* 0, w)
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Kinetic Theory and Rescahng
A A
Hep =4 — 2x0, — =57 (X0 +X*%) — 55 (2x + x*y)

o Express H,.¢s in terms of convenient basis:

wﬁ;”) =pa(X), ¥ =pa(X)e X  CChimEmELe

fdgx’va ef wa

e Given an initial condition f(p,t =0) =) b,(t = O)wg) and a
momentum rescaling D(t), we can:

o solve for w(t) using effective Hamiltonian evolution equation

o solve for instantaneous eigenstates to see how well it satisfies adiabaticity
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The Energy Gap as a Function of D

Re{E{-E}/(q D?)
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e The energy gap above the
instantaneous ground state
depends on the choice of the
scaling variable D.
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Example path #1

Given some choice of initial distribution Re{E;~Eo}/(q D?)
function, we can test difference possible B
choices for D(¢). One choice: D constant
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Example path #2

Re{E{-E}/(q D?)

Another possible choice: D(t) = q/A(t)
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Adiabaticity for example paths

0_8; Example #1
' — Adiabaticity condition
—— System equilibration
----- First excited state
----- Second excited state

----- Third excited state
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—— Adiabaticity condition
—— System equilibration
----- First excited state
----- Second excited state
----- Third excited state
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Optimizing Adiabaticity

e To find an adiabatic rescaling, write down 0 4and at each time step
minimize over D

o Gives an evolution equation for the rescaling coupled to the
system evolution

e Given f(p,t=0)=)_ b,(t= O)wg), simultaneously solve for D(z)
and b (1)
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Optimizing Adiabaticity

Re{E—Eq(q DY) _

— TR

Choosing D to maximize adiabaticity
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Optimizing Adiabaticity

—— Adiabaticity condition
—— System equilibration
----- First excited state
AAAAA Second excited state
----- Third excited state

..............................

As expected, we have a picture in which slow modes dominate before the
system has fully thermalized. The excited states decay sequentially, and
the evolution is extremely close to being exactly adiabatic.
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Conclusion and Next Steps

e We are able to find an adiabatic frame for a kinetic equation whose
effective eigenstates are not known analytically

e Here, as in previous work, adiabatic approach describes attractor
behavior long before hydro

e Still very much a work in progress!

e Extending this analysis to more general kKinetic equations

o Restore longitudinal expansion, add transverse expansion

e Using attractors as an ingredient in Bayesian analyses of heavy ion
collision data (e.g. Trajectum)
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