

Correlations & Flow in small systems

-Many flow-like signals have been observed in high multiplicity events

Flow in small systems-- Hydro Simulations

Initial state or Final state effects?

Initial state effects:

- Various Models interpolations
- -K. Dusling and R. Venugopalan, PRL 2012, PRD2013, NPA 2014
- -A. Dumitru and A. V. Giannini, NPA 2015, A. Dumitru and V. Skokov PRD2015
- -B. Schenke, S. Schlichting, P. Tribedy, and R. Venugopalan, PRL2016
- -K. Dusling et al, Phys. Rev. Lett 120 042002 (2018)
- -C. Zhang, et al Phys. Rev. Lett. 122, no. 17, 172302 (2019).

••• •••

Final state interactions:

- -P. Bozek, W. Broniowski, G. Torrieri, PRL2013
- -K. Werner, et. Al., PRL2014
- -G.-Y. Qin, B. Muller. PRC2014
- -Y. Zhou, X. Zhu, P. Li, and H. Song, PRC2015
- P. Bozek, A. Bzdak, and G.-L. Ma, PLB2015
- P. Romatschke, Eur. Phys. J. C77 21(2017)
- -W. Zhao, Y. Zhou, H. Xu, W. Deng and H. Sor Phys. Lett. B 780, 495 (2018)

Reminder: QGP signals in large systems

Probing the partonic degree of freedon in p-Pb collisions

QGP signals in p-Pb collisions?

NCQ scaling of v₂ in p-Pb collisions

Collective Flow:

Hydrodynamics final states interaction Initial state effects?

NCQ Scaling of V2:

- -Recent Exp measurements-
- -need systematic theoretical investigation

Hard Probes:

no longer leave obvious hints due to the limited size.

ALICE data: PLB,726, 164 (2013).

CMS data: PRL, 121, 082301 (2018). ATLAS data: PRC, 96, 024908 (2017).

- -Where does such approximate NCQ scaling of v_2 come from?
- -Is it an indication of partonic degree of freedom?

coalescence model & NCQ scaling of v₂

Coalescence model for large systems (Au+Au)

$$\frac{dN_{M}}{d^{3}\mathbf{P}_{M}} = g_{M} \int d^{3}\mathbf{x}_{1}d^{3}\mathbf{p}_{1}d^{3}\mathbf{x}_{2}d^{3}\mathbf{p}_{2}f_{q}(\mathbf{x}_{1},\mathbf{p}_{1})f_{\bar{q}}(\mathbf{x}_{2},\mathbf{p}_{2}) \times W_{M}(\mathbf{y},\mathbf{k})\delta^{(3)}(\mathbf{P}_{M}-\mathbf{p}_{1}-\mathbf{p}_{2})$$

$$\frac{dN_{B}}{d^{3}\mathbf{P}_{B}} = g_{B} \int d^{3}\mathbf{x}_{1}d^{3}\mathbf{p}_{1}d^{3}\mathbf{x}_{2}d^{3}\mathbf{p}_{2}d^{3}\mathbf{x}_{3}d^{3}\mathbf{p}_{3}f_{q_{1}}(\mathbf{x}_{1},\mathbf{p}_{1})$$

$$\times f_{q_{2}}(\mathbf{x}_{2},\mathbf{p}_{2})f_{q_{3}}(\mathbf{x}_{3},\mathbf{p}_{3})W_{B}(\mathbf{y}_{1},\mathbf{k}_{1};\mathbf{y}_{2},\mathbf{k}_{2}) \times \delta^{(3)}(\mathbf{P}_{B}-\mathbf{p}_{1}-\mathbf{p}_{2}-\mathbf{p}_{3})$$

- thermal - thermal parton coalescence

Au+Au collisions

QGP was discovered @RHIC

- -strong elliptic flow
- -jet quenching
- -NCQ scaling of elliptic flow

coalescence model & NCQ scaling of v₂

Coalescence model for large systems (Au+Au)

$$\frac{dN_{M}}{d^{3}\mathbf{P}_{M}} = g_{M} \int d^{3}\mathbf{x}_{1}d^{3}\mathbf{p}_{1}d^{3}\mathbf{x}_{2}d^{3}\mathbf{p}_{2}f_{q}(\mathbf{x}_{1},\mathbf{p}_{1})f_{\bar{q}}(\mathbf{x}_{2},\mathbf{p}_{2}) \times W_{M}(\mathbf{y},\mathbf{k})\delta^{(3)}(\mathbf{P}_{M}-\mathbf{p}_{1}-\mathbf{p}_{2})$$

$$\frac{dN_{B}}{d^{3}\mathbf{P}_{B}} = g_{B} \int d^{3}\mathbf{x}_{1}d^{3}\mathbf{p}_{1}d^{3}\mathbf{x}_{2}d^{3}\mathbf{p}_{2}d^{3}\mathbf{x}_{3}d^{3}\mathbf{p}_{3}f_{q_{1}}(\mathbf{x}_{1},\mathbf{p}_{1})$$

$$\times f_{q_{2}}(\mathbf{x}_{2},\mathbf{p}_{2})f_{q_{3}}(\mathbf{x}_{3},\mathbf{p}_{3})W_{B}(\mathbf{y}_{1},\mathbf{k}_{1};\mathbf{y}_{2},\mathbf{k}_{2}) \times \delta^{(3)}(\mathbf{P}_{B}-\mathbf{p}_{1}-\mathbf{p}_{2}-\mathbf{p}_{3})$$

- thermal - thermal parton coalescence

Small collision systems (p-Pb):

-the effects from mini-jets/ fragmentations from high p⊤ becomes important

Coalescence processes:

- thermal thermal parton coalescence
- thermal hard parton coalescence
- hard hard parton coalescence

Hydro-Coal-Frag Hybrid Model

Thermal hadrons (VISH2+1):

-generated by hydro. with Cooper-Frye.

-Meson: $P_T < 2P_1$; baryon: $P_T < 3P_1$.

Coalescence hadrons (Coal Model):

-generated by coalescences model including thermal-thermal, thermal-hard & hard-hard parton coalescence.

Fragmentation hadrons (LBT):

-Hard partons generated by PYTHIA8, then suffered energy loss by LBT

UrQMD afterburner:

-All hadrons are feed into UrQMD for hadronic evolution, scatterings and decays. Zhao, Ko, Liu, Qin & Song. Phys. Rev. Lett. 125 7 072301(2020)

Hydro.	Coalescence, fragmentation	fragmentation
0 30	GeV 5	GeV P _T

Main Parameters:

- -Thermal partons from hydro with $P_T > P_1$.
- -Hard partons from LBT with

$$P_{\mathrm{T}} > P_{2}$$
.

Fixed by the $p_{\rm T}$ spectra

$$P_{\rm T1} = 1.6 {\rm GeV}$$
 and $P_{\rm T2} = 2.6 {\rm GeV}$

Spectra of pions, kaons and protons

-Hydro-Coal-Frag, gives a nice description of spectra of pion, kaon and proton as well as the P/π over p_T from 0 to 6 GeV.

Spectra of pions, kaons and protons

- -Low p_T hadrons mainly come from hydro, Intermediate p_T hadrons mainly come from Coal. & Frag. High p_T hadrons come from Frag.
- -Coalescence hadrons: Thermal-thermal coalescence contribute most at intermediate p_{T} .

Zhao, Ko, Liu, Qin & Song. Phys. Rev. Lett. 125 7 072301(2020)

NCQ scaling of v₂ & hint partonic degree of freedom

- -Hydro-Coal-Frag model gives a nice description of $v_2(p_T)$ of pion, kaon and proton from 0 to 6 GeV.
- -At intermediate p_T , Hydro-Coal-Frag model obtains an approximate NCQ scaling as shown by the data.

The importance of quark coalescence in p-Pb collisions

Without coalescence, Hydro-Frag largely underestimates the $v_2(p_T)$ at intermediate p_T , violating the NCQ Scaling of v_2 .

Strongly indication of partonic degree of freedom in small system!

Zhao, Ko, Liu, Qin & Song, Phys. Rev. Lett. 125 7 072301(2020)

Probing the partonic degree of freedon in Pb-Pb collisions

Zhao, Chen, Luo, Ke & Wang. Phys. Rev. Lett. 128 2 022302(2022).

CoLBT-Hydro Model + Hydro-Coal-Frag Model

CoLBT-Hydro Model

Chen, Cao, Luo, Pang & Wang. Phys. Lett. B 810, 135783 (2020).

Linear Boltzmann Transport Model 3+1D hydrodynamic model

LBT CLVis

-Evolve the energetic partons and the bulk medium concurrently.

- -Hadronization by Hydro-Coal-Frag followed by the UrQMD.
 - thermal thermal parton coal
 - thermal hard parton coalescence
 - hard hard parton coalescence

Zhao, Chen, Luo, Ke & Wang. Phys. Rev. Lett. 128 2 022302(2022).

V₂ & the importance of quark coalescence

-CoLBT-hydro with coalescence works well for PID flow from 0 to 8 GeV.

-Quark coalescence is important for Pb+Pbcollisions at intermediate pr range.

thermal-hard parton Coalescence breaks up the NCQ scaling of v2

Zhao, Chen, Luo, Ke & Wang Phys. Rev. Lett. 128 2 022302(2022).

Evaluating the partonic flow in p-Pb and p-p collisions

Hydro-Coal-Frag Hybrid Model

Thermal hadrons (VISH2+1):

-generated by hydro. with Cooper-Frye.

-Meson: $P_T < 2P_1$; baryon: $P_T < 3P_1$.

Coalescence hadrons (Coal Model):

-generated by coalescences model including thermal-thermal, thermal-hard & hard-hard parton coalescence.

Fragmentation hadrons (LBT):

-Hard partons generated by PYTHIA8, then suffered with energy loss by LBT

UrQMD afterburner:

-All hadrons are feed into UrQMD for hadronic evolution, scatterings and decays. Zhao, Ko, Liu, Qin & Song. Phys. Rev. Lett. 125 7 072301(2020)

Hydro.	Coalescence, fragmentation	fragmentation
0 30	ieV 5	GGeV P _T

Main Parameters:

- -Thermal partons from hydro with $P_T > P_1$.
- -Hard partons from LBT with $P_T > P_2$.

Spectra of pions, kaons and protons

-Hydro-Coal-Frag model well describe the spectra of π , K and P and P/ π at 0-6 GeV in both pp and p-Pb collisions.

V₂ & the importance of quark coalescence

V₂ & the importance of quark coalescence

- -Hydro-Coal-Frag model describes v2(PT) & the approximately NCQ scaling at intermediate pT, for both pp and p-Pb collisions.
- -The NCQ scaling become worse from p-Pb to p-p collisions
- -Fragmentation tends to break-up the NCQ scaling at intermediate P⊤

SUMMARY

p-p and p-Pb collisions at LHC

- -Hydro-Coal-Frag model well describe the spectra, $v_2(p_T)$ and NCQ scaling of π , K and P at 0-6GeV in both pp and p-Pb collisions.
- -strongly indicates the partonic degrees of freedom in high multiplicity pp and p-Pb collisions.
- -The NCQ scaling become worse for p-p collisions due to fragmentations

Pb-Pb collisions at LHCo

- -CoLBT-Hydro with Hydro-Coal-Frag hadronization model well describe the spectra, $v_2(p_T)$ of π , K and P at 0-6GeV in Pb-Pb collisions.
- -Coalescence is important for Pb-Pb collisions at intermediate PT.