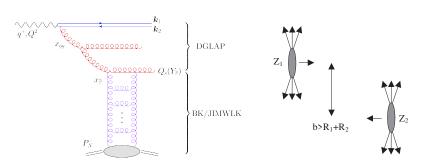
Probing gluon saturation via diffractive jets in ultra-peripheral nucleus-nucleus collisions

Edmond Iancu

IPhT, Université Paris-Saclay

with A.H. Mueller, D.N. Triantafyllopoulos, and S.-Y. Wei arXiv:2304.12401

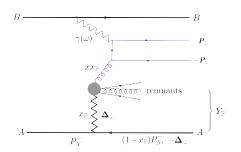


Outline

- Diffractive dijet production in photon-nucleus interactions at high energy:
 - a golden channel to study saturation
 - electron-nucleus DIS at the future EIC (LHeC ?)
 - nucleus-nucleus UPCs at the LHC: this talk
- Why diffraction ?
 - elastic scattering ⇒ controlled by strong scattering ("black disk limit")
 - particularly sensitive to high parton densities/gluon saturation
- Diffractive jets: a unique example of a hard process $(P_{\perp} \gg Q_s \sim 1 \text{ GeV})$ which is controlled by the physics of saturation
 - hard processes are easy to measure
 - a priori, well described by the collinear factorisation
 - saturation hidden in the diffractive PDFs ("non-perturbative")
- The CGC allows one to compute diffractive dijets from first principles
 - collinear (actually, TMD) factorisation emerges from the CGC

Collinear factorisation for diffractive dijets in UPCs

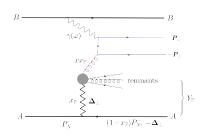
- ullet Coherent diffraction: target nucleus does not break $\Delta_{\perp} \sim 1/R_A \sim 30 \ {
 m MeV}$
- Elastic scattering \Rightarrow "Pomeron" exchange \Rightarrow rapidity gap: $Y_{\mathbb{P}} = \ln \frac{1}{x_{\mathbb{P}}}$
 - $x_{\mathbb{P}} \ll 1$: longitudinal momentum fraction taken by the Pomeron
- Quark-antiquark dijet produced via photon-gluon fusion
 - gluon produced by the Pomeron, together with remnants (color octet)

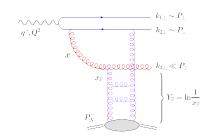


- x: gluon splitting fraction
- $xG_{\mathbb{P}}^{A}(x, x_{\mathbb{P}}, P_{\perp}^{2})$: gluon distribution of the Pomeron
- ... a.k.a. the gluon diffractive PDF
- "non-perturbative" in collinear fact.
- \bullet Cross-section: Photon energy flux \times Hard factor \times $xG_{\mathbb{P}}^{A}(x,x_{\mathbb{P}},P_{\perp}^{2})$

Colour dipole picture

- For small $x_{\mathbb{P}} \lesssim 10^{-2}$ and large $A \sim 200$, $xG_{\mathbb{P}}(x,x_{\mathbb{P}},P_{\perp}^2)$ can be computed from first principles: CGC & colour dipole picture
- Work in the "dipole frame" (the photon has a large q^+): $\frac{2q^+}{P_\perp^2}\gg R_A$
 - quark, antiquark and gluon now belong to the photon wavefunction





- Their elastic scattering: an explicit realisation of the Pomeron
 - 2 or more gluon exchanges + high energy evolution (BK/JIMWLK)
 - ullet $Y_{\mathbb{P}}$: the rapidity phase-space for high-energy evolution: $Q_s(A,Y_{\mathbb{P}})$

Colour dipole picture

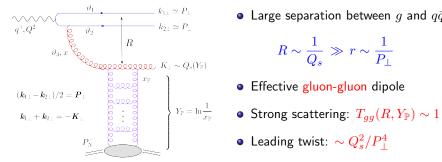
- For small $x_{\mathbb{P}} \lesssim 10^{-2}$ and large $A \sim 200$, $xG_{\mathbb{P}}(x,x_{\mathbb{P}},P_{\perp}^2)$ can be computed from first principles: CGC & colour dipole picture
- Work in the "dipole frame" (the photon has a large q^+): $\frac{2q^+}{P_\perp^2}\gg R_A$
 - quark, antiquark and gluon now belong to the photon wavefunction



- Gluon saturation at $k_{\perp} \lesssim Q_s \Longrightarrow$ Strong scattering $T_{q\bar{q}g} \sim 1$
 - ullet this requires a sufficiently large partonic projectile: $\Delta R \sim 1/Q_s$
 - ullet by itself, the $qar{q}$ pair is much smaller: $r\sim 1/P_{\perp}$ with $P_{\perp}\gg Q_s$

2+1 diffractive jets

- Pb+Pb UPCs at the LHC (ATLAS, CMS): $P_{\perp} \gtrsim 15 \, \text{GeV} \gg Q_s \sim 1 \div 2 \, \text{GeV}$
- A leading twist contribution requires strong scattering: $T_{q\bar{q}q} \sim 1$
 - $\sigma_{\rm el} \propto |T_{q\bar{q}q}|^2$ is strongly suppressed for weak scattering $(T_{q\bar{q}q} \ll 1)$
- ullet Strong scattering requires the gluon to be semi-hard: $K_{\perp} \sim Q_s$



• Large separation between g and $q\bar{q}$:

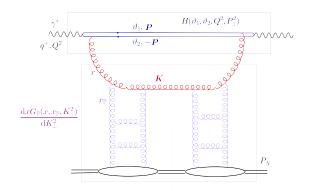
$$R \sim \frac{1}{Q_s} \,\gg\, r \sim \frac{1}{P_\perp}$$

- Effective gluon-gluon dipole

TMD factorisation for diffractive 2+1 jets

(E.I., A.H. Mueller, D.N. Triantafyllopoulos, Phys.Rev.Lett. 128 (2022) 20)

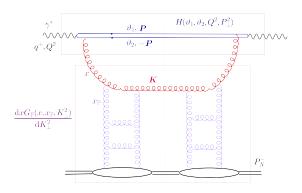
- ullet At high $P_{\perp}\gg Q_s$, collinear factorisation emerges from the dipole picture
 - the gluon can alternatively be seen as a part of the Pomeron



- Explicit result for the gluon diffractive TMD
 - the unintegrated gluon distribution of the Pomeron

TMD factorisation for diffractive 2+1 jets

$$\frac{\mathrm{d}\sigma_{2+1}^{\gamma_{T,L}^*A\to q\bar{q}gA}}{\mathrm{d}\vartheta_1\mathrm{d}\vartheta_2\mathrm{d}^2\boldsymbol{P}\mathrm{d}^2\boldsymbol{K}\mathrm{d}Y_{\mathbb{P}}}=H_{T,L}(\vartheta_1,\vartheta_2,Q^2,P_{\perp}^2)\,\frac{\mathrm{d}xG_{\mathbb{P}}(x,x_{\mathbb{P}},K_{\perp}^2)}{\mathrm{d}^2\boldsymbol{K}}$$



• The hard factor: the same as for inclusive dijets (cf. talk by C. Marquet)

$$H_T = \alpha_{\rm em} \alpha_s \left(\sum e_f^2 \right) \vartheta_1 \vartheta_2 (\vartheta_1^2 + \vartheta_2^2) \, \frac{1}{P_+^4} \quad \text{when } Q^2 \ll P_\perp^2$$

The Pomeron UGD

$$\frac{\mathrm{d}xG_{\mathbb{P}}(x,x_{\mathbb{P}},K_{\perp}^2)}{\mathrm{d}^2\boldsymbol{K}} = \frac{S_{\perp}(N_c^2-1)}{4\pi^3}\underbrace{\Phi_{\mathbb{P}}(x,x_{\mathbb{P}},K_{\perp})}_{\text{occupation numbe}}$$

- ullet Explicitly computed in terms of the gluon-gluon dipole amplitude $T_{gg}(R,Y_{\mathbb{P}})$
- Operatorial definition clarified by Hatta, Xiao, and Yuan (2205.08060)
- ullet Effective (x-dependent) saturation momentum: $ilde{Q}_s^2(x,Y_{\mathbb{P}})=(1-x)Q_s^2(Y_{\mathbb{P}})$

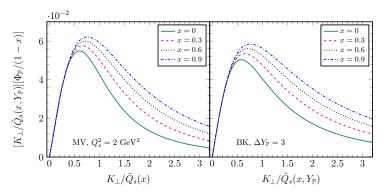
$$\Phi_{\mathbb{P}}(x, x_{\mathbb{P}}, K_{\perp}) \simeq (1 - x) \begin{cases} 1, & K_{\perp} \lesssim \tilde{Q}_s(x) \\ \\ \frac{\tilde{Q}_s^4(x)}{K_{\perp}^4}, & K_{\perp} \gg \tilde{Q}_s(x) \end{cases}$$

- \bullet Very fast decrease $\sim 1/K_{\perp}^4$ at large gluon momenta $K_{\perp}\!\gg \tilde{Q}_s(x)$
 - \bullet bulk of the distribution lies in the saturation domain at $K_{\perp} \lesssim \tilde{Q}_s(x)$
- Diffractive production of 2 hard jets is controlled by gluon saturation

Numerical results

(E.I., A.H. Mueller, D.N. Triantafyllopoulos, S.-Y. Wei, arXiv:2207.06268)

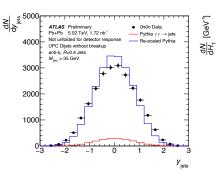
- ullet Occupation number Φ multiplied by $K_{\perp}/ ilde{Q}_s$ and divided by 1-x
- ullet Pronounced peak at $K_{\perp}\simeq ilde{Q}_s$: diffraction is controlled by saturation

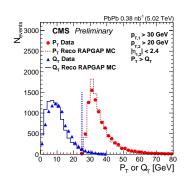


- \bullet BK evolution of $T_{gg}(R,Y_{\mathbb{P}})$ with increasing $Y_{\mathbb{P}}=\ln\frac{1}{x_{\mathbb{P}}}$
 - ullet $Q_s(Y_{\mathbb{P}})$ is rising but the shape is unchanged ("geometric scaling")

Diffractive jets in Pb+Pb UPCs at the LHC

Recent measurements: ATLAS-CONF-2022-021 and CMS arXiv:2205.00045



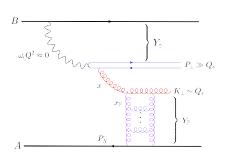


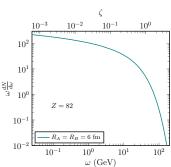
- Several thousands of candidate-events for coherent diffraction
 - ullet no just $\gamma\gamma$ scattering: cross-section would be 10 times smaller
- Most likely: 2+1 jets ... but not that easy to experimentally check
 - the experimental set-up is not ideal for observing the 3rd jet

2+1 diffractive dijets in AA UPCs

$$\frac{\mathrm{d}\sigma_{2+1}^{AB\to q\bar{q}gAB}}{\mathrm{d}\eta_1\mathrm{d}\eta_2\mathrm{d}^2\boldsymbol{P}\mathrm{d}^2\boldsymbol{K}\mathrm{d}Y_{\mathbb{P}}} = \omega \frac{\mathrm{d}N_B}{\mathrm{d}\omega} H(\eta_1,\eta_2,P_{\perp}^2) \frac{\mathrm{d}x G_{\mathbb{P}}^A(x,x_{\mathbb{P}},K_{\perp}^2)}{\mathrm{d}^2\boldsymbol{K}} + (A\leftrightarrow B)$$

- Rapidity gaps on both sides: photon gap + diffractive gap
 - how to distinguish the photon emitter from the nuclear target ?
- Energy is not that high: $\sqrt{s_{\scriptscriptstyle NN}} = 5 {\rm TeV}$, yet $\sqrt{s_{\scriptscriptstyle \gamma N}} = \sqrt{4 \omega_{\rm max} E_N} \simeq 650 {\rm GeV}$



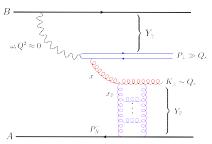


• upper energy cutoff: $b\sim \frac{1}{Q}>2R_A \ \Rightarrow \omega < \frac{\gamma}{2R_A} \equiv \omega_{\rm max} \simeq 40\,{\rm GeV}$

2+1 diffractive dijets in AA UPCs

$$\frac{\mathrm{d}\sigma_{2+1}^{AB\to q\bar{q}gAB}}{\mathrm{d}\eta_1\mathrm{d}\eta_2\mathrm{d}^2\boldsymbol{P}\mathrm{d}^2\boldsymbol{K}\mathrm{d}Y_{\mathbb{P}}} = \omega \frac{\mathrm{d}N_B}{\mathrm{d}\omega} H(\eta_1,\eta_2,P_{\perp}^2) \frac{\mathrm{d}x G_{\mathbb{P}}^A(x,x_{\mathbb{P}},K_{\perp}^2)}{\mathrm{d}^2\boldsymbol{K}} + (A\leftrightarrow B)$$

- Rapidity gaps on both sides: photon gap + diffractive gap
 - how to distinguish the photon emitter from the nuclear target ?
- Energy is not that high: $\sqrt{s_{\scriptscriptstyle NN}} = 5 {\rm TeV}$, yet $\sqrt{s_{\scriptscriptstyle \gamma N}} = \sqrt{4 \omega_{\rm max} E_N} \simeq 650 {\rm GeV}$



$$x_{\mathbb{P}, \min} = \frac{P_{\perp}}{E_N} e^{-y}$$

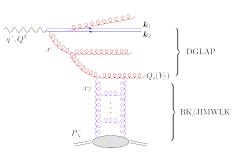
$$\omega = P_{\perp} e^y$$

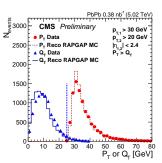
$$P_{\perp} \sim \omega_{\max} \implies y \lesssim 1$$

• Hard dijets $P_{\perp} \geq 15 \, \text{GeV} \Rightarrow x_{\mathbb{P}}$ is not that small: $x_{\mathbb{P}} \gtrsim 5 \times 10^{-3}$

DGLAP evolution & Final state radiation

- When $x_{\mathbb{P}} \gtrsim 5 \times 10^{-3}$, gluon saturation is only marginally probed
 - one cannot probe the high energy evolution of the Pomeron
- Large $P_{\perp} \Rightarrow$ large phase-space for DGLAP evolution
 - additional gluons with transverse momenta $Q_s \ll k_{\perp} \ll P_{\perp}$

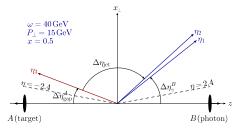




- ullet Large dijet imbalance $Q_T = |m{k}_1 + m{k}_2| \sim 10\,{
 m GeV} \gg Q_s$ (seen at the LHC)
 - consistent with final state radiation (Hatta et al, 2010.10774)
 - insensitive to the 3rd jet

Measuring the 3rd jet: would be highly beneficial

- Can one directly measure the third jet ?
 - $K_{\perp} \sim Q_s \sim 1 \div 2 \, \text{GeV}$: too soft to qualify as a jet!
 - it could be measured as a hadron... depending upon its rapidity
- It always propagates towards the nuclear target: lift the ambiguity
- ullet Assume the photon to be a right mover: it was emitted by nucleus B



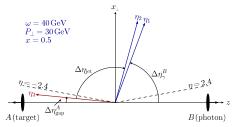
- large $\omega = 40 {\rm GeV}$, low $P_{\perp} = 15 {\rm GeV}$
- $\eta_{1,2} \simeq 1, \ \Delta \eta_{\text{jet}} = 2.7, \ x_{\mathbb{P}} \simeq 0.004$

$$\Delta \eta_{
m jet} \gtrsim \ln rac{2P_{\perp}}{Q_s} \simeq 2 \div 3$$

ullet The 3rd "jet" could have been seen as a hadron by CMS: $|\eta_3|<|\eta_{
m max}|=2.4$

Measuring the 3rd jet: would be highly beneficial

- Can one directly measure the third jet ?
 - $K_{\perp} \sim Q_s \sim 1 \div 2 \, \text{GeV}$: too soft to qualify as a jet!
 - it could be measured as a hadron... depending upon its rapidity
- It always propagates towards the nuclear target: lift the ambiguity
- ullet Assume the photon to be a right mover: it was emitted by nucleus B



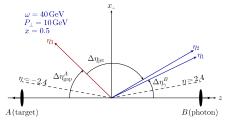
- large $\omega = 40 {\rm GeV}$, large $P_{\perp} = 30 {\rm GeV}$
- $\eta_{1,2} \simeq 0.3, \ \Delta \eta_{\rm jet} = 3.4, \ x_{\mathbb{P}} \simeq 0.02$

$$\Delta \eta_{
m jet} \gtrsim \ln rac{2P_{\perp}}{Q_s} \simeq 2 \div 3$$

• Yet, CMS measured $P_{\perp}=30\,\text{GeV}...$ so they missed it! (arXiv:2205.00045)

Measuring the 3rd jet: would be highly beneficial

- Can one directly measure the third jet ?
 - $K_{\perp} \sim Q_s \sim 1 \div 2 \, \text{GeV}$: too soft to qualify as a jet!
 - it could be measured as a hadron... depending upon its rapidity
- It always propagates towards the nuclear target: lift the ambiguity
- ullet Assume the photon to be a right mover: it was emitted by nucleus B



- $\bullet \ \mbox{large} \ \omega = 40 \mbox{GeV}, \mbox{ lower } P_{\perp} = 10 \mbox{GeV}$
- $\eta_{1,2} \simeq 1.4, \ \Delta \eta_{\rm jet} = 2.3, \ x_{\mathbb{P}} \simeq 0.002$

$$\Delta \eta_{
m jet} \gtrsim \ln rac{2P_{\perp}}{Q_s} \simeq 2 \div 3$$

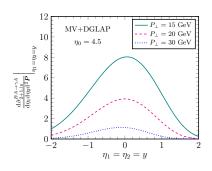
- The situation would greatly improve by decreasing P_{\perp} (ALICE ?)
- ullet Rapidity separation $\Delta\eta_{\rm jet} \colon$ a direct measure of the saturation momentum Q_s

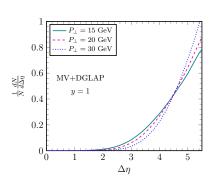
Conclusions

- ullet Diffraction in γA (EIC, UPC): the best laboratory to study gluon saturation
- For sufficiently small $x_{\mathbb{P}} \lesssim 10^{-2}$ and/or large $A \sim 200$, diffractive TMDs and PDFs can be computed from first principles
- Due to saturation, diffractive dijets are dominated by (2+1)-jet events
- Experimentally observing the semi-hard, 3rd, jet appears to be tough, but it would be highly beneficial
 - distinguish the photon emitter from the target nucleus
 - confirm the overall physical picture and its predictions
- Measure dijets (or dihadrons) with lower $P_{\perp} \leq 10 \, \text{GeV}$
- Use hadronic detectors at larger rapidities

Rapidity distributions

- Left: y distribution of the hard dijets (after integrating out the 3rd jet)
 - roughly symmetric around y = 0
 - ullet rapidly decreasing when increasing P_{\perp}





• Right: rapidity separation $\Delta \eta_{\rm jet}$ between the 3rd jet and the hard dijets

$$\Delta \eta_{\rm jet} = \eta_{1,2} - \eta_3 = \ln \frac{1-x}{x} + \ln \frac{2P_\perp}{K_\perp} \gtrsim \ln \frac{2P_\perp}{Q_s} \simeq 2 \div 3$$

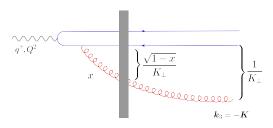
The Pomeron UGD: a diffractive TMD

$$\frac{\mathrm{d}xG_{\mathbb{P}}(x,x_{\mathbb{P}},K_{\perp}^{2})}{\mathrm{d}^{2}\boldsymbol{K}} = \frac{S_{\perp}(N_{c}^{2}-1)}{4\pi^{3}} \underbrace{\frac{[\mathcal{G}(x,x_{\mathbb{P}},K_{\perp}^{2})]^{2}}{2\pi(1-x)}}_{\text{occupation number }\Phi}$$

 \bullet Explicitly computed in terms of the gluon-gluon dipole amplitude $T_{gg}(R,Y_{\mathbb{P}})$

$$\mathcal{G} = \mathcal{M}^2 \int_0^\infty \mathrm{d}R R \, \mathrm{J}_2(K_\perp R) \mathrm{K}_2(\mathcal{M}R) \mathcal{T}_{gg}(R,Y_\mathbb{P}) \quad \text{with} \quad \mathcal{M}^2 \equiv \frac{x}{1-x} K_\perp^2$$

ullet the gluon dipole size R is limited by the virtuality: $R\lesssim 1/\mathcal{M}$

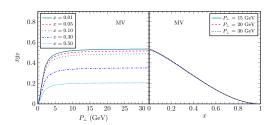


The gluon diffractive PDF

ullet By integrating the gluon momentum K_{\perp} : the usual collinear factorisation

$$xG_{\mathbb{P}}(x, x_{\mathbb{P}}, P_{\perp}^2) \equiv \int^{P_{\perp}} d^2 \boldsymbol{K} \, \frac{dx G_{\mathbb{P}}^A(x, x_{\mathbb{P}}, K_{\perp}^2)}{d^2 \boldsymbol{K}} \, \propto \, (1 - x)^2 \, Q_s^2(A, Y_{\mathbb{P}})$$

- ... but with an explicit result for the gluon diffractive PDF.
- ullet The integral is rapidly converging and effectively cut off at $K_\perp \sim ilde{Q}_s(x)$
- The $(1-x)^2$ vanishing at the end point is a hallmark of saturation

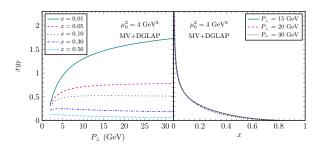


The gluon diffractive PDF

ullet By integrating the gluon momentum K_{\perp} : the usual collinear factorisation

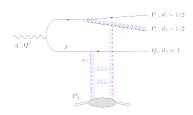
$$xG_{\mathbb{P}}(x, x_{\mathbb{P}}, P_{\perp}^2) \equiv \int^{P_{\perp}} d^2 \boldsymbol{K} \, \frac{dx G_{\mathbb{P}}^A(x, x_{\mathbb{P}}, K_{\perp}^2)}{d^2 \boldsymbol{K}} \, \propto \, (1 - x)^2 \, Q_s^2(A, Y_{\mathbb{P}})$$

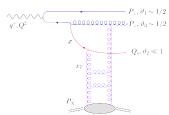
- ... but with an explicit result for the gluon diffractive PDF.
- ullet The integral is rapidly converging and effectively cut off at $K_{\perp}\sim ilde{Q}_s(x)$
- The $(1-x)^2$ vanishing at the end point is a hallmark of saturation



2+1 jets with a hard gluon

• The third (semi-hard) jet can also be a quark: same-order





• TMD factorisation: quark unintegrated distribution of the Pomeron

