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@ Diffractive dijet production in photon-nucleus interactions at high energy:
a golden channel to study saturation
o electron-nucleus DIS at the future EIC (LHeC ?7)
e nucleus-nucleus UPCs at the LHC: this talk

@ Why diffraction ?
o elastic scattering = controlled by strong scattering (“black disk limit")
e particularly sensitive to high parton densities/gluon saturation
@ Diffractive jets: a unique example of a hard process (P, > Qs ~ 1 GeV)
which is controlled by the physics of saturation
e hard processes are easy to measure
e a priori, well described by the collinear factorisation
e saturation hidden in the diffractive PDFs (“non-perturbative™)
@ The CGC allows one to compute diffractive dijets from first principles

o collinear (actually, TMD) factorisation emerges from the CGC
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Collinear factorisation for diffractive dijets in UPCs

@ Coherent diffraction: target nucleus does not break A | ~ 1/R4 ~ 30 MeV

@ Elastic scattering = “Pomeron” exchange = rapidity gap: Yp = In i
e zp < 1: longitudinal momentum fraction taken by the Pomeron

@ Quark-antiquark dijet produced via photon-gluon fusion

o gluon produced by the Pomeron, together with remnants (color octet)

T, @ x: gluon splitting fraction
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) e e 2G4 (z,zp, P?): gluon distribution
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@ “non-perturbative” in collinear fact.

Py (1—wp)Py. —AL
@ Cross-section: Photon energy flux x Hard factor x 2G% (z, zp, P?)
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Colour dipole picture

@ For small 2p < 1072 and large A ~ 200, 2Gp(z, xp, P?) can be computed

from first principles: CGC & colour dipole picture
@ Work in the “dipole frame” (the photon has a large ¢™): % > R

e quark, antiquark and gluon now belong to the photon wavefunction
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@ Their elastic scattering: an explicit realisation of the Pomeron
e 2 or more gluon exchanges + high energy evolution (BK/JIMWLK)
e Yp : the rapidity phase-space for high-energy evolution: Q,(A4, Yp)
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Colour dipole picture

@ For small 2p < 1072 and large A ~ 200, 2Gp(z, xp, P?) can be computed

from first principles: CGC & colour dipole picture
@ Work in the “dipole frame” (the photon has a large ¢™): % > R

e quark, antiquark and gluon now belong to the photon wavefunction
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@ Gluon saturation at k; < Qs = Strong scattering Tz, ~ 1
e this requires a sufficiently large partonic projectile: AR ~ 1/Qs

o by itself, the ¢g pair is much smaller: r ~ 1/P, with P; > Qs

Initial Stages 2023, Copenhagen Diffractive Jets in AA UPCs Edmond lancu



2+1 diffractive jets

@ Pb+Pb UPCs at the LHC (ATLAS, CMS): P > 15GeV > Q. ~ 1 +2GeV
@ A leading twist contribution requires strong scattering: 1354 ~

o 0o o |T,q4|? is strongly suppressed for weak scattering (T4, < 1)

@ Strong scattering requires the gluon to be semi-hard: K| ~ Qq

@ Large separation between g and qq:

1 1
RN7>>’,“N7
Qs PJ_

@ Effective gluon-gluon dipole

(ki —ka1)/2 =P,

s J‘ .
ki 4k = — K, Vo=l @ Strong scattering: T,,(R,Yp) ~ 1

@ Leading twist: ~ Q?/P}
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TMD factorisation for diffractive 241 jets

(E.l, A.H. Mueller, D.N. Triantafyllopoulos, Phys.Rev.Lett. 128 (2022) 20)

@ At high P, > @, collinear factorisation emerges from the dipole picture

o the gluon can alternatively be seen as a part of the Pomeron
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@ Explicit result for the gluon diffractive TMD

e the unintegrated gluon distribution of the Pomeron
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TMD factorisation for diffractive 241 jets
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@ The hard factor: the same as for inclusive dijets (cf. talk by C. Marquet)

1
Hy = qoma (Z ei.) 9102(9% + 02) pr when Q? < P?
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The Pomeron UGD

de[p((E,(L']p,Ki) SL(AN'C2 - ].)
K = e Pp(z, zp, K1)

occupation number

@ Explicitly computed in terms of the gluon-gluon dipole amplitude T, (R, Y»)
@ Operatorial definition clarified by Hatta, Xiao, and Yuan (2205.08060)

o Effective (z-dependent) saturation momentum: Q2(z, V) = (1 — 2)Q%(Y3)

]-7 KLS Qs(m)
Op(z,zp, K1) ~ (1 —x) Q‘l.(az)

Kii’ K> Qs(x)

@ Very fast decrease ~ 1/K7 at large gluon momenta K| > Qs(z)

o bulk of the distribution lies in the saturation domain at K| < Q,(x)

@ Diffractive production of 2 hard jets is controlled by gluon saturation
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Numerical results

(E.l., A.H. Mueller, D.N. Triantafyllopoulos, S.-Y. Wei, arXiv:2207.06268)
@ Occupation number ® multiplied by KL/QS and divided by 1 —

@ Pronounced peak at K, ~ Q,: diffraction is controlled by saturation

—xz=0 : —_—x=0

(K1 /Qu(x, Ye)][@p/(1 — )]
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@ BK evolution of Ty4(R, Yp) with increasing Yp = In zi]p

o Qs(Yp) is rising but the shape is unchanged ( “geometric scaling™)
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Diffractive jets in Pb+Pb UPCs at the LHC

@ Recent measurements: ATLAS-CONF-2022-021 and CMS arXiv:2205.00045

PbPb 0.38 nb* (5.02 TeV)
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@ Several thousands of candidate-events for coherent diffraction
@ no just 77y scattering: cross-section would be 10 times smaller
@ Most likely: 241 jets ... but not that easy to experimentally check

o the experimental set-up is not ideal for observing the 3rd jet

Initial Stages 2023, Copenhagen Diffractive Jets in AA UPCs Edmond lancu



2+1 diffractive dijets in AA UPCs

doy' [y 799948 dNg 5. dzGA(z, zp, K2)
= H P P L A< B
AP PERDY, ~ “ aw [ PL) 2K + )

@ Rapidity gaps on both sides: photon gap + diffractive gap

e how to distinguish the photon emitter from the nuclear target 7

@ Energy is not that high: /syy =5TeV, yet /5.y =V 4Wmax v ~650GeV
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o upper energy cutoff: b~ & >2R4 = w < 37— = Winax =~ 40 GeV
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2+1 diffractive dijets in AA UPCs
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@ Rapidity gaps on both sides: photon gap + diffractive gap

e how to distinguish the photon emitter from the nuclear target ?

@ Energy is not that high: /syy =5TeV, yet /s, v =V4Wmax En >~ 650GeV
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@ Hard dijets P, > 15GeV = xp is not that small: zp > 5 x 107
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DGLAP evolution & Final state radiation

@ When zp = 5 x 1073, gluon saturation is only marginally probed
e one cannot probe the high energy evolution of the Pomeron
@ Large P, = large phase-space for DGLAP evolution

e additional gluons with transverse momenta Qs < k; < P
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@ Large dijet imbalance Q1 = |k1 + k2| ~ 10 GeV > Q, (seen at the LHC)

e consistent with final state radiation (Hatta et al, 2010.10774)
e insensitive to the 3rd jet
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Measuring the 3rd jet: would be highly beneficial

@ Can one directly measure the third jet 7

o K| ~Qs~1-+2GeV: too soft to qualify as a jet!

e it could be measured as a hadron... depending upon its rapidity
@ It always propagates towards the nuclear target: lift the ambiguity

@ Assume the photon to be a right mover: it was emitted by nucleus B

@ large w = 40GeV, low P, = 15GeV
o N2 = 17 Anjet = 27, Irp =~ 0.004

2P,

S

Anjes 2 In ~2=+3

A (target) B (photon)

@ The 3rd “jet” could have been seen as a hadron by CMS: |n3| < |Nmax| = 2.4
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Measuring the 3rd jet: would be highly beneficial

@ Can one directly measure the third jet 7

o K| ~Qs~1-+2GeV: too soft to qualify as a jet!

e it could be measured as a hadron... depending upon its rapidity
@ It always propagates towards the nuclear target: lift the ambiguity

@ Assume the photon to be a right mover: it was emitted by nucleus B

@ large w = 40GeV, large P, = 30GeV

@ 712~ 0.3, Anjer = 3.4, xp ~ 0.02
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@ Yet, CMS measured P, = 30 GeV... so they missed it! (arXiv:2205.00045)
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Measuring the 3rd jet: would be highly beneficial

@ Can one directly measure the third jet ?
o K| ~Qs~1-+2GeV: too soft to qualify as a jet!

e it could be measured as a hadron... depending upon its rapidity

@ It always propagates towards the nuclear target: lift the ambiguity

@ Assume the photon to be a right mover: it was emitted by nucleus B

R
w = 40GeV
P, = 10GeV @ large w = 40GeV, lower P, = 10GeV
r = U.0
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@ The situation would greatly improve by decreasing P, (ALICE ?)

@ Rapidity separation Anje: a direct measure of the saturation momentum Q)
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Conclusions

o Diffraction in yA (EIC, UPC): the best laboratory to study gluon saturation

@ For sufficiently small zp < 1072 and/or large A ~ 200, diffractive TMDs
and PDFs can be computed from first principles

@ Due to saturation, diffractive dijets are dominated by (2+41)—jet events

@ Experimentally observing the semi-hard, 3rd, jet appears to be tough, but it
would be highly beneficial

e distinguish the photon emitter from the target nucleus

e confirm the overall physical picture and its predictions

@ Measure dijets (or dihadrons) with lower P; < 10 GeV

@ Use hadronic detectors at larger rapidities
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Rapidity distributions

@ Left: y distribution of the hard dijets (after integrating out the 3rd jet)
e roughly symmetric around y =0

e rapidly decreasing when increasing P
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@ Right: rapidity separation A7jc; between the 3rd jet and the hard dijets

11—z 2PL QPL .
Anjet =M2—1n3 =1n . +anL = In 0. ~2=3
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The Pomeron UGD: a diffractive TMD

deGp(a,op, K2)  SL(NZ—1)  [G(x,ap, K2))?
d?K 473 27(1 — )
occupation number ®

@ Explicitly computed in terms of the gluon-gluon dipole amplitude T, (R, Yp)

xT
2
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G =M / dRRJo(K 1 R)Ko(MR) Ty, (R,Ye) with M” = -
0
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o the gluon dipole size R is limited by the virtuality: R < 1/ M
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The gluon diffractive PDF

@ By integrating the gluon momentum K : the usual collinear factorisation

(z,zp, K7)

2K X (1 —JJ)2 Qi(A7YP)

Py A
rGp(x, xp, P1) E/ d’K deGp

@ ... but with an explicit result for the gluon diffractive PDF.
@ The integral is rapidly converging and effectively cut off at K| ~ Qs(‘L)

@ The (1 — z)? vanishing at the end point is a hallmark of saturation
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The gluon diffractive PDF

@ By integrating the gluon momentum K : the usual collinear factorisation

dzG# (x, xp, K2)
2K

Py
xGp(z,zp, P?) = / d’K

o (1-2)? QA Yp)

@ ... but with an explicit result for the gluon diffractive PDF.

@ The integral is rapidly converging and effectively cut off at K| ~ Q(x)

@ The (1 — z)? vanishing at the end point is a hallmark of saturation
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241 jets with a hard gluon

@ The third (semi-hard) jet can also be a quark: same-order
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@ TMD factorisation: quark unintegrated distribution of the Pomeron
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