

Universiteit Utrecht

Anisotropic flow in small systems

Hydrodynamics at its limits

Together with Govert Nijs

Wilke van der Schee Initial Stages, Copenhagen 21 June 2023

One fluid to rule them all --- Panta Rei

Long range rapidity correlations seen in near-side ridge

- Most natural explanation in terms of a geometric effect --- hydro?
- Low multiplicity: correlations dominated by `non-flow' effects:
 - Momentum conservation (away side ridge)
 - Fragmentation (also: resonance decays)

Hydrodynamic models describe the data well (?)

• In the case of superSONIC a relatively simple initial Glauber model (3 constituents)

superSONIC for p+p, $\sqrt{s}=5.02$ TeV, 0-1%

See also talk by Huichao Song (Wed 15:20)

One fluid to rule them all --- Panta Rei

Similar results from IP-Glasma + MUSIC + UrQMD

- Initial state in this case very `bumpy'
- PbPb/XeXe elliptic flow larger than small systems at same small multiplicity

Similar results from HIJING/Trento + iEBE-VISHNU for pp collisions

- Initial state is varied from HIJING to Trento
- Describes data well

Bayesian analysis of p-Pb

Bayesian analysis including p-Pb collisions

- Requires nucleon `substructure': *n* constituents of width *v*
- More challenging to emulate/compute than PbPb

MAP comparison of Trajectum in 2020

- Reasonable agreement
 - Curious imaginary values both in theory and data of v₃{2}

Anisotropic flow in small systems

The success of hydro or anything goes?

- Requires a systematic study: vary parameters consistent with PbPb data
 - Including changes in initial state and changes in viscosities
- Do we do an apples-to-apples comparison?
 - Small multiplicity: need to understand `non-flow subtraction'
 - Resonance decays lead to non-trivial correlations

This talk: use *Trajectum* to study this in detail

Future aim: what are the limits of hydro?

The limits of hydrodynamics is a great motivation in theory and experiment: upcoming OO and pO runs in 2024 ©. Possibility of Neon run in 2025?

Back to basics: the total hadronic cross section

Total cross section on the high side

- Based on 10 `likely' parameter settings
- Even with a nucleon width of ~0.6 fm

$$\sigma_{AB} = A B \, \sigma_{NN} / \langle N_{\rm col} \rangle$$

• Average N_{coll} hence a bit low

Implies reduce nuclear thickness of about 7% higher than CMS value

Could have serious implications for pPb R_{AA}

$$\begin{array}{c|cccc} & & T_{AA} & [\,\text{mb}^{-1}\,] \\ \hline \text{Trajectum} & 0.0947 {\pm} 0.0010 \\ \text{CMS} & 0.0983 {\pm} 0.0044 \\ \end{array}$$

$$\langle T_{AB} \rangle = \langle N_{\rm col} \rangle / \sigma_{NN}$$

Yields and mean transverse momentum pPb

Same 10 likely settings that compare well with pPb

- No new fitting parameters (uses norm of PbPb)
- Proton mean p_T overestimated compared to ALICE (see however CMS)
- Significant systematic uncertainty: constrain by Bayesian global analysis?

Spectra

More differential: identified spectra

- Significant distortions in shape
- Hadronisation is difficult, also uncertainty due to afterburner

Spectra

More differential: identified spectra

- Significant distortions in shape
- Hadronisation is difficult, also uncertainty due to afterburner
- Smaller but similar tensions with data for PbPb

The elephant in the room: `non-flow' subtraction

Theory: usually ignored in hydro (hydro does not have `non-flow'?)

Exceptions: Zhao, Ko, Liu, Qin and Song (pp, 2001.06742) and Zhao, Ryu, Shen and Schenke (dAu, γ-Pb 2211.16376, 2203.06094)

Experiment: almost always subtracted as much as possible (?) by imposing largest $\Delta \eta$ gap

 \circ $\Delta\eta$ gap depends on experiment and is rarely varied

Method 1: cumulants

$$v_n\{2\}^2 = \langle \langle e^{in(\phi_i - \phi_j)} \rangle \rangle$$

First average: within acceptance all particle pairs i, j in a single event

Second average*: average over ensemble of events

Method 2: subevents

$$v_n\{2, |\Delta\eta| > \gamma\}^2 = \langle \langle e^{in(\phi_i - \phi_j)} \rangle \rangle$$

First average: within acceptance all particle pairs i (with $\eta < \gamma/2$) and j (with $\eta > \gamma/2$)

Second average*: average over ensemble of events

Note: not equivalent even for $\gamma = 0$ (!)

^{*} In practice one first averages over small centrality classes and then averages over those results to obtain a larger bin. For some observables this is extremely important (SC, $\rho(v_2\{2\}, p_T)$), but for $v_n\{2\}$ it makes only a small difference. Often it is not explicitly mentioned how the third averaging is done.

Cumulants

Method 1: cumulants

$$v_n\{2\}^2 = \langle \langle e^{in(\phi_i - \phi_j)} \rangle \rangle$$

Efficient computation:

$$Q_n = \sum_{a=i}^{M} e^{in\phi_i}$$

$$v_n \{2\}^2 = \langle \frac{|Q_n|^2 - M}{M(M-1)} \rangle$$

Requires M computations instead of M^2 . The -M subtracts i=j in double sum

Important theorem:

If ϕ_i are randomly drawn from $f(\phi)$ then $v_n\{2\}$ will converge to the true Fourier coefficients of $f(\phi)$

Easy to understand for $f(\phi)$ = constant: Q_n is a random walk, so for many events:

$$|Q_n| = \sqrt{M} \to v_n\{2\} = 0 \text{ (for } n > 0)$$

Important caveat:

 ϕ_i are not drawn randomly In this talk we focus on correlations due to resonance decays

Subevent

Method 2: subevents

$$v_n\{2, |\Delta\eta| > \gamma\}^2 = \langle \langle e^{in(\phi_i - \phi_j)} \rangle \rangle$$

Efficient computation:

$$Q_{n,a} = \sum_{i \in \{\eta < \gamma/2\}}^{M_a} e^{in\phi_i}$$

$$Q_{n,b} = \sum_{i \in \{\eta > \gamma/2\}}^{M_a} e^{in\phi_i}$$

$$v_n\{2\}^2 = \langle \frac{\Re(Q_{n,a}Q_{n,b}^*)}{M_aM_b} \rangle$$

(for infinite # events the imaginary part vanishes anyway)

Three comments

- Particles from different regions: less effect from resonances
- Smaller phase space: fewer particles, harder statistically
- For large γ event-plane decorrelation is important

Intuition: random walk with resonances

Method 1: cumulants

$$v_n\{2\}^2 = \langle \langle e^{in(\phi_i - \phi_j)} \rangle \rangle$$

Efficient computation:

$$Q_n = \sum_{a=i}^{M} e^{in\phi_i}$$
$$v_n \{2\}^2 = \langle \frac{|Q_n|^2 - M}{M(M-1)} \rangle$$

Requires M computations instead of M^2 . The -M subtracts i=j in double sum

Oversimplified ansatz:

Zero intrinsic flow and every particle decays into two particles with the same transverse direction.

New 'flow' due to resonances:

$$M \to 2M$$
 $Q_n \to 2Q_n$
 $v_n\{2\}^2: 0 \to \langle \frac{M}{M(M-1)} \rangle \approx 1/M$

When is can this be ignored?

$$v_n \gtrsim 1/\sqrt{M}$$

pPb: $v_n \sim 0.05$, $1/\sqrt{M} \sim 0.1$
PbPb: $v_n \sim 0.1$, $1/\sqrt{M} \sim 0.03$

For pPb and cumulants this can be the dominant effect

Also present in all hydro codes that include resonance decays (!)

Now more serious: using Trajectum

- 1. Straightforward to use
- 2. Fast and publicly available
 - ~1 event/second on a laptop
- Fully parallelized
 - Can run unlimited number of events
- 4. Resonance decays/interactions handled by SMASH


```
f0500=false
   numevents=1
   seed=7398984.747399307
   debugoutput=true
   numthreads=2
entropyacceptanceprobability{
   24:0.0
   24.5:0.05
   25.5:0.05
   26:0.0
   100:0.0
trentosubstructurePbPb{
   dmin=0.63933
   w=0.701919
   sigmann=70.0
   sigmafluct=0.73579
   p=0.14388
   a=1.0
   Eref=0.2
   norm=23.507
   freestreamingreferencetime=1.1708
   freestreamingvelocity=0.62672
   weaktostrong=0.0
   nref=20
   alpha=0
   nc=3.2747
   voverw=0.4892041602706295
secondorderhydro{
   numlatticesites=166.0
   latticesize=33.2
musclsolverktminmodfastmidpoint{
   cflconstant=0.08
LatticeEOStempdepDuke{
   shearhrg=0.0895066
   shearmin=0.0895066
   shearslope=0.43252
   shearcry=0.231195
   shearrelaxationtime=6.318855
   bulkmax=0.0030138
   bulkT0=0.21471
   bulkwidth=0.10906
   bulkrelaxationtime=0.0687
   deltapipiovertaupi=1.333333333333333
   phi7overpressure=0.128571
   taupipiovertaupi=1.61033
   lambdapiPiovertaupi=1.2
   deltaPiPiovertauPi=0.66666666
   lambdaPipiovertauPi=1.6
   philoverpressure=0
   phi3overpressure=0
   phi6overpressure=0
cooperfrvehadronizer{
   freezeouttemp=153.456
   rapidityrange=0.1
```

general{
 output=out
 format=smash

$\Delta \eta$ in pPb collisions – MAP setting with varying cuts

Large and significant effects

- Even $\Delta \eta = 0$ decreases flow by ~20%
- For low multiplicity $\Delta \eta$ is dominant effect
 - Even in 'hydro'
- Relatively unique measurement from ALICE
- Qualitative agreement
- Does not agree quantitatively
 - Not fitted in Bayesian analysis

$\Delta\eta$ in pPb collisions – Resonances and afterburner (SMASH)

Verification that effects are due to hadronic phase

- Cumulants (blue) and Subevent (red)
- Without afterburner the two methods agree (dashed)

$\Delta \eta$ in pPb collisions – p_T - differential

Similar effect when looking at p_T differential flow

- Stronger effect at lower multiplicity
- Converges at low p_T (attractor ;))

Elliptic flow in pPb collisions – a systematic analysis

Ten likely settings from posterior distribution

- Subevent method much smaller flow than cumulant method
- Realistically typically a factor two too low
 - Points to caveat to all previous pPb flow studies that include an afterburner/resonances
- One exception (next slide)

Elliptic flow in pPb collisions – two constituent model (?)

Guess based on previous parameters: two constituents with subwidth 0.3 fm (rest is MAP)

- Clearly much more elliptic flow (even too much)
- \circ Effects from $\Delta\eta$ gap smaller at large multiplicity (also because of higher flow: $v_n \gtrsim 1/\sqrt{M}$)

Exciting upcoming Oxygen run

Perfect system at moderate multiplicity: hydro at its limits

- $\Delta \eta$ =0 important for ALICE coverage, but not dominant
- Important caveat: nuclear structure is not that well understood (fix this with Neon collisions?)
- Curious: resonance decays lead to negative v₅{2} and v₆{2}

Bonus slide

Several systems with MAP settings (systematic analysis with ratios for some to appear)

See also talks by Debojit Sarkar, Yem-Jie Lee & Yuuka Kanakubo (Thu morning)

Important questions for small systems

Hydrodynamic signature is anisotropic flow

- Flow is small, signal $v_n \sim 1/\sqrt{M}$ and hence need to be careful
- Important: no discussion of `real non-flow', e.g. jets and hard QCD

Collectivity is a broader concept than hydrodynamics

- pPb results depend sensitively on model parameters
 - Hard to conclude that `panta rei'; systematics is important
- At the moment unclear if any parameters fit consistently (also spectra?)

Useful to have a tool like *Trajectum*

- Fast: each curve for pPb takes only about 5k CPU hours,
 Runs ~400M Trento IC, ~1M hydro runs and ~30M SMASH runs
- Message both to theory + experiment: details and specifically cuts matter

Exciting time ahead with Oxygen and other small systems (Ne?);

BACK-UP

$\Delta\eta$ in PbPb collisions – MAP setting with varying cuts

Small but significant effects

- Etagap always reduces v2, always increases v4 (even for $\Delta \eta = 0$)
- Settings fit to method 1 (black), but etacut potentially improves agreement (important within ALICE uncertainties)
- Larger effect for smaller detector acceptance (e.g. more important for ALICE than for ATLAS)
- In ratio with data effects are constant versus centrality (however small absolute effect: percent level * percent level)

MAP settings

For reference the settings used for most runs

Except 10 settings drawn from posterior

	MAP
N PbPb _{2.76} [fm ⁻¹]	17.9188
σ _{NN} PbPb _{2.76} TeV [mb]	61.8
w PbPb _{2.76} [fm]	0.577622
cent _{norm} PbPb _{2.76} [%]	97.9491
N PbPb _{5.02} [fm ⁻¹]	22.3675
σ _{NN} PbPb 5.02 TeV [mb]	67.6
σ_{fluct}	0.510595
P	-0.0790886
q	1.2493
d _{min} [fm]	0.99714
T _{switch} [MeV]	149.742
n _c	2.30004
χ_{struct}	0.792271
τ _{hyd} [fm/c]	0.544193
$\overline{\eta / s}$	0.18022
$(\eta/s)_{slope}$ [GeV ⁻¹]	0.132154
$(\eta/s)_{\delta slope}$ [GeV ⁻¹]	0.371218
(η/s) _{0.8 GeV}	0.324098
(5 / s) max	0.0372411
(⟨	0.00517364
(⟨	0.35605
τ_{π} sT/ η	1.65841
$\tau_{\pi\pi} / \tau_{\pi}$	3.48342
r _{hyd}	0.829136
a _n	0.655107
$\langle \beta_2^2 \rangle - \langle \beta_2 \rangle^2$	0.0689689
a _{EOS}	-9.41155
f _{smash}	0.903164