

Open heavy-flavour and quarkonia production at LHCb

Jianqiao Wang on behalf of the LHCb collaboration

Initial Stages 2023

June 21, 2023

2 LHCb detector

3 Results from heavy-flavour production at LHCb

- Prompt D^+ and D_s^+ production in pPb at $\sqrt{s_{\rm NN}} = 5.02 \,\text{TeV}$
- Prompt D^0 production in pPb at $\sqrt{s_{\rm NN}} = 8.16$ TeV
- Prompt Ξ_c^+ production in *p*Pb at $\sqrt{s_{\rm NN}} = 8.16$ TeV
- Υ production in pp at $\sqrt{s} = 5$ TeV

Heavy flavour in heavy-ion collisions

- Heavy-flavour particles are excellent probes in heavy-ion collisions
 - \blacktriangleright Large quark masses allow perturbative QCD calculation
 - ▶ Sensitive to the nuclear medium due to their long lifetime
- Related nuclear matter effects
 - Modification of nPDF
 - Strangeness enhancement
 - Baryon enhancement
 - Heavy quarkonia suppression

LHCb detector in Run2

- A single-arm forward spectrometer, covering the pseudo-rapidity range of $2<\eta<5$
- Designed for studying particles containing b or c quarks
- \bullet A general purposed detector collecting $pp/p{\rm Pb}/{\rm PbPb}$ data, providing unique fix-target mode at the LHC

Prompt D^+ and D_s^+ production in pPb at 5.02 TeV LHCb-PAPER-2023-006, in preparation

- Enhanced strangeness production can be induced by QGP due to the large $s\bar{s}$ abundance
- Possible strangeness enhancement seen in high multiplicity small systems by ALICE $\Omega(\Xi)/\pi$ and LHCb B_s^0/B^0
- Impact parameter (IP) used for discriminating prompt and non-prompt (from b) components, yields determined from simultaneous fits on invariant mass and $\log_{10}(\chi_{\rm IP}^2)$ ($\chi_{\rm IP}^2 \sim {\rm IP}/\sigma_{\rm IP}$)

D^+ and D_s^+ nuclear modification factor

• Nuclear modification factor calculated using LHCb *pp* results as reference

$$R_{p\rm Pb} = \sigma_{p\rm Pb} / (A \cdot \sigma_{pp})$$

- General consistency with LHCb D^0 in 5 TeV pPb as well as theories
- More suppressed $R_{pPb}(D^+)$ at backward rapidity

4 6 1 1 4

D_s^+/D^+ production ratio

- D_s^+/D^+ ratios are consistent with both LHCb pp and ALICE pp/pPb results
- $\bullet\,$ Higher D_s^+/D^+ ratios at backward rapidity, hinting at potential coalescence contribution

• Further work desired involving multiplicity classification with higher statistics

Prompt D^0 production in pPb at 8.16 TeV

arXiv:2205.03936

- Measurement of D^0 production for both forward and backward rapidity regions down to $p_{\rm T} \sim 0 \,\text{GeV}/c$, giving insights into partonic structures at both shadowing and anti-shadowing regions
- Approximately 20 times more statistics compared to 5 TeV

D^0 forward-backward production ratio

• Forward-backward production ratio $R_{\rm FB}$ given as

- Significant production asymmetry at low $p_{\rm T}$
- Rising trend towards unity with increasing $p_{\rm T}$, higher than nPDF calculations

D^0 nuclear modification factor

- pp reference obtained from interpolation on LHCb 5 TeV and 13 TeV D^0 results
- In general agreement with nPDF and CGC calculations

- More suppressed $R_{p\rm Pb}$ in low $p_{\rm T}$ at forward, possibly attributed to FCEL effects
- Discrepancy of $\sim 2.0 3.8\sigma$ in high $p_{\rm T}$ at backward, indicating additional initial / final-state effects

D^0 nuclear modification factor

• The experimental proxies x_{exp} and Q_{exp}^2 used for comparing results in different energy and kinematic regions

$$x_{\exp} \equiv 2 \frac{\sqrt{p_{\mathrm{T}}^2(D^0) + M^2(D^0)}}{\sqrt{s_{\mathrm{NN}}}} e^{-y^*} \text{ and } Q_{\exp}^2 \equiv p_{\mathrm{T}}^2(D^0) + M^2(D^0)$$

• Consistency between LHCb results at 5.02 TeV and 8.16 TeV in (x, Q^2) space

• Stronger suppression than nPDF calculations in $x \sim 0.01$ at larger Q^2

Prompt Ξ_c^+ production in *p*Pb at 8.16 TeV

arXiv:2305.06711

- First measurement of Ξ_c^+ baryons in heavy-ion collisions, powerful probe of strangeness enhancement and hadronisation
- $\Xi_c^+[usc](\Lambda_c^+[udc]) \to pK^-\pi^+$ channels employed

• Comparison also made with D^0 results

Ξ_c^+/Λ_c^+ and Ξ_c^+/D^0 production ratio

• Production ratios multiplied by the branching fraction due to the large $\mathcal{B}(\Xi_c^+ \to p K^- \pi^+)$ uncertainties

- No significant dependence on $p_{\rm T}$ of $R_{\Xi_c^+/\Lambda_c^+}$ and $R_{\Xi_c^+/D^0}$
- In agreement with HELAC-onia calculation incorporating EPPS16 nPDF

Ξ_c^+ forward-backward production ratio

• Uncertainty of branching fraction cancelled in the ratio

$$R_{\rm FB}(p_{\rm T}, y^*) \equiv \frac{{\rm d}\sigma_{\Xi_c^+}(p_{\rm T}, +|y^*|)/({\rm d}p_{\rm T}{\rm d}y^*)}{{\rm d}\sigma_{\Xi_c^+}(p_{\rm T}, -|y^*|)/({\rm d}p_{\rm T}{\rm d}y^*)}$$

• Measured in the common integrated rapidity region $2.5 < |y^*| < 4.0$

• The suppression at forward well described by nuclear shadowing

\varUpsilon production in pp at 5 TeV

- Aim to study hadronisation of quark pairs into quarkonium states (non-perturbative regime)
- Υ mesons reconstructed via $\mu^-\mu^+$ final states

$\boldsymbol{\Upsilon}$ nuclear modification factor

• $R_{pPb}(\Upsilon(1S))$ at $\sqrt{s_{NN}} = 5$ TeV updated using the measured pp cross-section

$$R_{p\rm Pb} = \begin{cases} 1.02 & \pm 0.19 & \pm 0.10, & -4.0 < y^* < -1.5 \\ 0.76 & \pm 0.08 & \pm 0.05, & 1.5 < y^* < 4.0 \end{cases}$$

- Consistent with theories with higher precision
- Investigation on multiplicity-dependent $\Upsilon(nS)$ ratios in progress

Summary and prospects

- Heavy-flavour particles are sensitive to nuclear matter effects in heavy-ion collisions, and the LHCb experiment has strong capabilities to studying them
 - ▶ D_s^+ and $D^+ R_{pPb}$, as well as D_s^+/D^+ ratio measured in 5 TeV *pPb*, in agreement with LHCb *pp* and ALICE *pp/pPb* results
 - \blacktriangleright Tension between prompt $D^0~R_{p\rm Pb}$ and nPDF predictions in high $p_{\rm T}$ at backward rapidity at 8.16 TeV
 - ▶ First measurement of Ξ_c^+ baryons in *p*Pb, suppressed production at forward rapidity well described by nuclear shadowing
 - ▶ $\Upsilon(1S)$ R_{pPb} updated with new pp results at 5 TeV, consistent with theories with improved precision
- Stay tuned for more results from Run2 data
 - ▶ Works on light hadrons to be presented by Federica here at 17:10
 - ▶ Results in UPC by Qiuchan
- Run3 data-taking in progress and more physics opportunities available
 - ▶ More detail on SMOG2 from Camilla's Poster

Thanks

Backups

LHCb heavy-ion data

• LHCb beam configurations

• Data sets

• Kinematic coverage

LHCb detector at Run3

- Collision rate at 40 MHz
- Pile-up factor $\mu\approx 5$
- New tracking system:
 - Silicon upstream detector (UT)
 - Scintillating tracking fibre (SciFi)
- Full software trigger:
 - Remove L0 triggers
 - Read out the full detector at 40 MHz

B_s^0/B^0 ratio vs. multiplicity in pp

• B_s^0/B^0 ratio in different $p_{\rm T}$ regions:

- B_s^0/B^0 ratio increases with multiplicity at low $p_{\rm T}$, with a slope significance of 3.4σ (strangeness enhancement), qualitatively consistent with expectations from the coalescence model.
- Flat trend vs. multiplicity at high $p_{\rm T}$, in agreement with e^+e^- results.

Ξ_c mass spectrum in forward and backward rapidities

Υ cross-section

• $\Upsilon(1S)$ cross-section compared with NRQCD at high $p_{\rm T}$

Exotic production at LHCb

- LHCb is very active in studying exotic states.
- Exotic states observed at the LHC.
 - ▶ All but one observed by LHCb.

$\chi_{c1}(3872)$ structure

• The structure of $\chi_{c1}(3872)$ state still not clear: compact tetraquark / hadronic molecule ?

Compact tetraquark Hadronic molecule

- Or superposition of different states: $\chi_{c1}(3872) = a|c\bar{c}\rangle + b|c\bar{c}q\bar{q}\rangle$?
- Compare the $\chi_{c1}(3872)$ state with conventional $c\bar{c}$ meson $\psi(2S)$.
- Probe the final-state effects on $\chi_{c1}(3872)$ according to comover/coalescence model.

Prompt $\chi_{c1}(3872)$ production in heavy-ion collisions

LHCb-CONF-2022-001

- First measurement on $\chi_{c1}(3872)$ in *p*Pb collisions
- Provide unique insights into the structure of $\chi_{c1}(3872)$ states
- $\chi_{c1}(3872)$ and $\psi(2S)$ states reconstructed via common final states $J/\psi \pi^+\pi^-$

System	Rapidity	Energy	Luminosity
$pp \\ pPb \\ Pbp$	$\begin{array}{l} 2 < y < 4.5 \\ 1.5 < y_{\rm cm} < 4 \\ -5 < y_{\rm cm} < -2.5 \end{array}$	8 TeV 8.16 TeV 8.16 TeV	$2 {\rm fb}^{-1}$ $12.5 {\rm nb}^{-1}$ $19.3 {\rm nb}^{-1}$

$\chi_{c1}(3872)/\psi(2S)$ ratio across collision systems

- Initial-state effects largely cancelled in ratio
- Final-state effects dominant

Phys. Rev. Lett. 126, (2021) 9, 092001

- The ratio increases with the system size, different from the decreasing trend as multiplicity in *pp*
- Indicate that coalescence may dominate the $\chi_{c1}(3872)$ production in *p*Pb?

Prompt Λ_c^+/D^0 ratio in peripheral PbPb at 5 TeV LHCb-PAPER-2021-046, in preparation

- First Λ_c^+/D^0 ratio measurement in peripheral PbPb collisions at forward rapidity, up to ~ 60% centrality.
- Baryon to meson ratio sensitive to hadronisation mechanism.

- A relative enhancement at intermediate $p_{\rm T}$.
- Consistent with LHCb results in *p*Pb at $\sqrt{s_{\rm NN}} = 5.02$ TeV.

Prompt Λ_c^+/D^0 ratio in peripheral PbPb

LHCb-PAPER-2021-046, in preparation

- $R_{\Lambda_{\rm o}/\rm D^{\rm o}}$ R_{A°}′D° LHCb PbPb Vs_{NN} = 5.02 TeV b PbPb $\sqrt{s_{virt}} = 5.02 \text{ TeV}$ 2 < y < 4.5, <N >= 15.75+- 10.01 2 = 15.75 + 10.01Uncorr. uncert. Uncorr. uncert 0.8 Global uncert. 5.16 % 0.8 Global uncert. 5.16 % PYTHIA 8 + CR pp@5TeV Preliminary 0.6 0.6 Preliminary 0.4 0.4 0.2 0.2 RQM+Frag PYTHIA 8 + CR pp@5TeV 2 2 3 6 p_{T} [GeV/c] v
- Comparisons with theoretical calculations:

- Compatible with PYTHIA 8 + Colour reconnection prediction for $p_{\rm T} > 4 \,\text{GeV}/c$.
- Standard Hadronisation Model does not reproduce the data.

Prompt Λ_c^+/D^0 ratio in peripheral PbPb

LHCb-PAPER-2021-046, in preparation

- Similar $p_{\rm T}$ trend with ALICE for $p_{\rm T} > 4 \,{\rm GeV}/c$.
- $R_{\Lambda_c^+/D^0}$ vs. y at forward rapidity lower than ALICE results at mid rapidity.