Unequal Rapidity Correlators from a Numerical Implementation of JIMWLK

Tuomas Lappi, Andrecia Ramnath, Sören Schlichting

20 June 2023 Initial Stages, Copenhagen, Denmark

Introduction Outline

•00

- Motivation
- Colour Glass Condensate formalism
- Equal rapidity correlators: example 1 DIS
- Equal rapidity correlators: example 2 qg production
- qg production at unequal rapidities
- Preliminary numerical results

Introduction 0.00

- Origin of structure of azimuthal correlations in small systems (pp, pA) not fully understood
- Azimuthal correlations extend far in rapidity
- Such correlations must originate early in collision

Dumitru, Gelis, McLerran, Venugopalan, Nucl. Phys. A810 (2008) 91

CMS, Phys. Lett. B 718 (2013) 795

Colour Glass Condensate

Introduction

000

- Colour Glass Condensate (CGC) is suitable framework for studying correlations with large rapidity separations ($\Delta Y > 1/\alpha_{\rm s}$) \to "unequal rapidity correlators". In practical calculations: renormalisation group equations, Wilson lines, etc. evolve in rapidity
- Most common phenomenological applications consider correlations with small rapidity separations ($\Delta Y \leq 1/\alpha_{\rm s}$) \rightarrow "equal rapidity correlators". E.g. DIS, single inclusive particle production, multi-particle production
- Recent work on extending calculations to include large rapidity separations:
 - Dense-dense formalism

Gelis, Lappi, Venugopalan, Phys. Rev. D79 (2008) 094017, Lappi, Acta Phys. Polon. B40 (2009) 1997 & Nucl. Phys. A910-911 (2013) 518

Phenomenological applications

Schenke, Schlichting, Phys. Rev. C94 (2016) 044907

Multi-particle correlations in small collision systems

Dusling, Gelis, Lappi, Venugopalan, Nucl. Phys. A836 (2010) 159
Kovner, Lublinsky, Phys. Rev. D83 (2011) 034017 & Phys. Rev. D84 (2011) 094011
Dumitru, Dusling, Gelis, Jalilian-Marian, Lappi, Venugopalan, Phys. Lett. B697 (2011) 21
Dusling, Venugopalan, Phys. Rev. Lett. 108 (2012) 262001 & Phys. Rev. D87 (2013) 051502 & Phys. Rev. D87 (2013) 054014

Equal Rapidity Example 1: DIS

• Consider *ep* collision:

ullet QCD interaction between projectile and target through $qar{q}$ dipole

DIS Example Continued

Wilson lines colour-rotate projectile – basic building blocks of CGC calculations

$$= U_{\boldsymbol{v}} := \operatorname{P} \exp \left\{ -ig \int_{-\infty}^{\infty} \mathrm{d}x^{+} A^{-}(x^{+}, \boldsymbol{v}, 0) \right\}$$

DIS cross section

$$\sigma^{\gamma^* p}(x, Q^2) = \int_{\boldsymbol{r}} \int_0^1 \mathrm{d}\alpha \left| \psi^{\gamma^* \to q\bar{q}}(\alpha, \boldsymbol{r}^2, Q^2) \right|^2 2 \int_{\boldsymbol{b}} \mathrm{Re} \left\langle 1 - S_{\boldsymbol{x}\boldsymbol{y}}^{(2)} \right\rangle_Y$$

• Dipole operator

$$S_{m{xy}}^{(2)} := rac{1}{N_{
m c}} {
m tr} \left(egin{matrix} rac{U_{m{x}}}{U_{m{y}}^{\dagger}} \ rac{U_{m{y}}^{\dagger}}{N_{
m c}} \ \end{array}
ight) = rac{{
m tr} \left(U_{m{x}} U_{m{y}}^{\dagger}
ight)}{N_{
m c}}$$

• Expectation value $\langle \rangle$ is average over background field configurations – contains all information about target

Equal Rapidity Example 2: qg Production 1/2

ullet Partonic level process: qg production in any nuclear-nuclear collision

• First deal with produced q: $\frac{\mathrm{d}\sigma_{\mathrm{q}}}{\mathrm{d}\eta_{p}\mathrm{d}^{2}p} = xq(x)\frac{1}{(2\pi)^{2}}\int_{x\bar{x}}e^{-ip\cdot(x-\bar{x})}\left\langle S_{x\bar{x}}^{(2)}\Big|_{\bar{U}=U}\right\rangle_{Y}$

$$S_{m{x}ar{m{x}}}^{(2)} = rac{1}{N_{
m c}} {
m tr} \left(U_{m{x}} ar{U}_{ar{m{x}}}^{\dagger}
ight) \quad = rac{1}{N_{
m c}} {
m tr} \left(egin{matrix} {
m direct\ amplitude} & {
m complex\ conjugate\ amplitude} \\ m{x} & m{ar{x}} & m{ar{x}} \end{array}
ight)$$

qg Production Example Continued

Hentschinski, Weigert, Schafer, Phys. Rev. D 73 (2006) 051501 Kovner, Lublinsky, Weigert, Phys. Rev. D 74 (2006) 114023

Kovner, Lublinsky, JHEP 11 (2006) 083

• Next, deal with produced q:

$$\frac{\mathrm{d}\sigma_{\mathrm{qg}}}{\mathrm{d}\eta_{p}\mathrm{d}^{2}p\mathrm{d}\eta_{k}\mathrm{d}^{2}k} = \frac{1}{16\pi^{4}} \int_{\boldsymbol{x}\bar{\boldsymbol{x}}} e^{-i\boldsymbol{p}\cdot(\boldsymbol{x}-\bar{\boldsymbol{x}})} \left\langle H_{\mathrm{prod}}(k)S_{\boldsymbol{x}\bar{\boldsymbol{x}}}^{(2)} \Big|_{\bar{\boldsymbol{U}}=\boldsymbol{U}} \right\rangle_{\boldsymbol{Y}}$$

• Production Hamiltonian $H_{\mathrm{prod}}(\boldsymbol{k})$

$$:=\frac{1}{4\pi^3}\int_{\boldsymbol{y}\bar{\boldsymbol{y}}}e^{-i\boldsymbol{k}\cdot(\boldsymbol{y}-\bar{\boldsymbol{y}})}\int_{\boldsymbol{u}\bar{\boldsymbol{u}}}\mathcal{K}^i_{\boldsymbol{y}\boldsymbol{u}}\mathcal{K}^i_{\bar{\boldsymbol{y}}\bar{\boldsymbol{u}}}\Big(L^a_{\boldsymbol{u}}-\tilde{U}^{\dagger ab}_{\boldsymbol{y}}R^b_{\boldsymbol{u}}\Big)\left(\bar{L}^a_{\bar{\boldsymbol{u}}}-\bar{\tilde{U}}^{\dagger ac}_{\bar{\boldsymbol{y}}}\bar{R}^c_{\bar{\boldsymbol{u}}}\right)$$

• L^a_u and R^b_u are Lie derivatives

Large Rapidity Separations

• Still qg production, but now $\Delta Y > 1/\alpha_s$

• Separate rapidity range into two segments & discretise ΔY range

Modified Cross Section for qq Production

lancu, Triantafyllopoulos, JHEP 1311 (2013) 067

New cross section

$$\frac{\mathrm{d}\sigma_{qg}}{\mathrm{d}Y\mathrm{d}^2p\mathrm{d}Y_\mathrm{A}\mathrm{d}^2k_\mathrm{A}} = \frac{1}{16\pi^4} \int_{\boldsymbol{x}\bar{\boldsymbol{x}}} e^{-i\boldsymbol{p}\cdot(\boldsymbol{x}-\bar{\boldsymbol{x}})} \left\langle \left. H_\mathrm{prod}(k_\mathrm{A}) \left\langle S_{\boldsymbol{x}\bar{\boldsymbol{x}},N}^{(2)} \right\rangle_{\nu} \right|_{\bar{U}_\mathrm{A}=U_\mathrm{A}} \right\rangle_{Y_\mathrm{A}}$$

- Evaluation of nested correlators $\left\langle \left. H_{\mathrm{prod}}(k_{\mathrm{A}}) \left\langle S_{x\bar{x},N}^{(2)} \right\rangle_{\nu} \right|_{\bar{U}_{\Lambda} = U_{\Lambda}} \right\rangle_{V}$:
 - Evolve $S_{x\bar{x}}^{(2)}$ from $Y_A = Y_0$ to $Y = Y_N$
 - Set all barred quantities to barred ones (no more distinguishing between direct and complex conjugate amplitudes)
 - Act with $H_{\mathrm{prod}}(\boldsymbol{k}_{\mathrm{A}})$ at Y_{A}
 - Evolve from target rapidity Y_{in} to Y_A

Summary

Wilson Line Evolution Equation

Blaizot, Iancu, Weigert, Nucl. Phys. A713 (2003) 441-469

Langevin JIMWLK evolution equation for Wilson line

$$U_{\boldsymbol{x},n+1}^{\dagger} = \exp\left\{i\epsilon g \alpha_{\boldsymbol{x},n}^{\mathbf{L}}\right\} U_{\boldsymbol{x},n}^{\dagger} \exp\left\{-i\epsilon g \alpha_{\boldsymbol{x},n}^{\mathbf{R}}\right\}$$

00.00

Fields colour rotate Wilson lines (cf. Lie derivatives)

$$U_{\boldsymbol{x},0}\alpha_{\boldsymbol{x},0}^{\mathbf{R}} = \frac{1}{\sqrt{4\pi^3}} \int_{\boldsymbol{z}} \mathcal{K}_{\boldsymbol{x}\boldsymbol{z}}^{i} \nu_{\boldsymbol{z},0}^{a,i}$$

$$\alpha_{\boldsymbol{x},0}^{\mathbf{L}}U_{\boldsymbol{x},0} = \frac{1}{\sqrt{4\pi^3}} \int_{\boldsymbol{z}} \mathcal{K}_{\boldsymbol{x}\boldsymbol{z}}^{i} \nu_{\boldsymbol{z},0}^{a,i} \overset{\text{uniform}}{\underset{b}{\text{uniform}}}$$

Bilocal Evolution Equations

- $H_{\mathrm{prod}}(k_{\mathrm{A}}) \left\langle S_{m{x}m{ar{x}},N}^{(2)} \right
 angle \implies$ need to evolve $LU,RU,LU^{\dagger},RU^{\dagger}$ (only one of four evolution equations needed - other three can be derived from taking Hermitian conjugate and/or using relation $L_u^a = \tilde{U}_u^{\dagger ab} R_u^b$
- E.g.

$$\begin{split} R_{\pmb{u},0}^a U_{\pmb{x},n+1}^\dagger &= e^{i\epsilon g \alpha_{\pmb{x},n}^{\rm R}} R_{\pmb{u},0}^a U_{\pmb{x},n}^\dagger e^{-i\epsilon g \alpha_{\pmb{x},n}^{\rm L}} \\ &- \frac{i\epsilon g}{\sqrt{4\pi^3}} e^{i\epsilon g \alpha_{\pmb{x},n}^{\rm R}} U_{\pmb{x},n}^\dagger \int_{\pmb{z}} \mathcal{K}_{\pmb{x}\pmb{z}}^i \left[U_{\pmb{z},n} \nu_{\pmb{z},n}^i U_{\pmb{z},n}^\dagger, U_{\pmb{z},n} R_{\pmb{u},0}^a U_{\pmb{z},n}^\dagger \right] + \mathcal{O}\left(\nu \epsilon^2\right) \end{split}$$

One step:

Preliminary Numerical Results: Dipole Correlator

- Study evolution equations for $U^\dagger_{{\bm x},n}$ and $R^a_{{\bm u},0}U^\dagger_{{\bm x},n+1}$ on lattice, fixed coupling, MV model initial condition
- ullet Look at inclusive qg production cross section

$$\frac{\mathrm{d}\sigma_{qg}}{\mathrm{d}Y\mathrm{d}^2p\mathrm{d}Y_\mathrm{A}\mathrm{d}^2k_\mathrm{A}} \sim \left\langle \left. H_\mathrm{prod}(k_\mathrm{A}) \left\langle S_{x\bar{x},N}^{(2)} \right\rangle_{\nu} \right|_{\bar{U}_\mathrm{A} = U_\mathrm{A}} \right\rangle_{Y_\mathrm{A}}$$

 Dipole correlator as function of transverse coordinate separation at various rapidities

A. Ramnath

Summary

• Two-particle correlation as function of ϕ (p is quark moment, k is gluon momentum)

Summary

- Want to understand particle correlations over large rapidity separations
- CGC effective theory is useful
- CGC formalism with DIS example
- Inclusive qg production at equal rapidities
- ullet Extension of inclusive qg production to unequal rapidities
- Preliminary numerical results