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Motivation

• Origin of structure of azimuthal correlations in small systems (pp, pA) not fully
understood

• Azimuthal correlations extend far in rapidity

• Such correlations must originate early in collision

4 5 Results

|h| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET

event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts and potential contributions from secondary particles (including those from
weak decays) are examined by loosening or tightening the track selections on dz/s(dz) and
dT/s(dT) from 2 to 5. The associated yields are found to be insensitive to these track selections
within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <

35) and (b) for a high-multiplicity selection (Noffline
trk � 110). The sharp near-side peaks from jet

correlations have been truncated to better illustrate the structure outside that region.

5 Results
Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

after the big bang. It is now believed that these large scale fluctuations origi-
nate in small quantum fluctuations present during the inflationary epoch. Dur-
ing the rapid expansion of the universe in this epoch, these quantum fluctua-
tions were stretched to size scales much larger than those that were causally
connected in the post-inflationary era when the universe was expanding in a
state close to thermal equilibrium. Therefore such super horizon scale fluctu-
ations cannot be much affected by the sub-horizon scale processes allowable
in the post-inflationary thermal universe. This explains why CMB measure-
ments provide extremely valuable information about the inflationary epoch of
the universe, despite the fact that the CMB radiation was produced long after
(tCMB ∼ 4 · 105 years) the primordial fluctuations that are responsible for its
features (tinflation ∼ 10−33 seconds).

There is a concrete analog of such super-horizon fluctuations in the matter
produced in high energy hadronic collisions such as heavy ion collisions at RHIC,
as illustrated in fig. 1. In this figure, we represent the “event horizons” as seen
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Figure 1: The red and green cones are the location of the events in causal
relationship with the particles A and B respectively. Their intersection is the
location in space-time of the events that may correlate the particles A and B.

from the last rescattering of two particles A and B on the freeze-out surface.
These are the red and green cones pointing to the past. Any event that has a
causal influence on the particles A or B must take place inside the corresponding
event horizon. Any event that induces a correlation between the particles A and
B must lie in the overlap of their event horizons. Therefore, if the particles A
and B have rapidities y

A
and y

B
, the processes that caused their correlations

must have occurred before the time1

τ ≤ τfreeze out e− 1
2 |y

A
−y

B
| . (1)

1We assume here that a particle detected with momentum rapidity y originates from a point
of space-time rapidity η ≈ y on the freeze-out surface. This is a consequence of the boost
invariance of the collision (at high energy), and of the fact that the local thermal motion
spreads the rapidities by at most one unit in rapidity.
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Colour Glass Condensate

• Colour Glass Condensate (CGC) is suitable framework for studying correlations
with large rapidity separations (∆Y > 1/αs) → “unequal rapidity correlators”.
In practical calculations: renormalisation group equations, Wilson lines, etc.
evolve in rapidity

• Most common phenomenological applications consider correlations with small
rapidity separations (∆Y ≤ 1/αs) → “equal rapidity correlators”. E.g. DIS,
single inclusive particle production, multi-particle production

• Recent work on extending calculations to include large rapidity separations:

• Dense–dense formalism

• Phenomenological applications

• Multi-particle correlations in small collision systems
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Equal Rapidity Example 1: DIS

• Consider ep collision:

e

p

γ∗

x0

x3

x+x−

γ∗ target

• QCD interaction between projectile and target through qq̄ dipole

Y

Yin

x+ = 01 �1x+ = 01 �1

�⇤Ux

U†
y

target initial statefinal state

background field

q

g

target

Y

�Y < 1/↵s

Yin
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DIS Example Continued

• Wilson lines colour-rotate projectile – basic building blocks of CGC calculations

2. The Colour Glass Condensate

We have introduced a diagrammatic notation in the spirit of [49] that is used
throughout this thesis. The notation for the Wilson lines is a shorthand for multiple
gluon exchange between the projectile and the target:

Ux = = · · · . (2.21)

The thin horizontal lines represent the projectile, the thick horizontal line at the
bottom represents the target and the blue vertical line represents the background
gauge field A�(z+, x, 0). An interaction between the target and the projectile is
denoted by a green arrowhead along the projectile’s line at the point where it meets
the background field at x+ = 0. Since the light cone time axis runs from right to
left, as shown in Fig. 2.3, a Wilson line is represented by an arrowhead pointing left
and the Hermitian conjugate Wilson line is represented by an arrowhead pointing
right (since an antiquark is thought of as a quark propagating backwards in light
cone time).

With this new diagrammatic notation, the interaction shown in Fig. 2.3 may
be recast as Fig. 2.6. The Ux and U †

y, respectively, replace the propagators of
the eikonal quark and antiquark traversing the x+-axis. The quark and antiquark
split from the virtual photon at x+ ! �1, have transverse positions x and y,
respectively, and then recombine into a photon at x+ ! 1. In reality, the dipole
would form from the photon at some finite time before x� = 0 and recombine into
a photon at some finite time after x� = 0. Both Ux and U †

y are elements of the
SU(Nc) Lie group; they transform under the fundamental and antifundamental
representations, respectively. The non-Abelian nature of QCD manifests in the path
ordering in Eqs. (2.19) and (2.20), since the order of interactions along the path of
integration must be preserved to ensure that the noncommuting generators are kept
ordered.

In subsequent chapters, we also consider gluon interactions with the target.
The corresponding Wilson line is in the adjoint representation of SU(Nc) and is
denoted by a diamond instead of an arrowhead (since it is just a real number without
direction):

Ũab
z = 2tr

�
taUzt

bU †
z

�
=: (2.22)
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=
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= Uv := P exp

{
−ig

∫ ∞

−∞
dx+A−(x+,v, 0)

}

• DIS cross section

σγ∗p(x,Q2) =

∫

r

∫ 1

0

dα
∣∣∣ψγ∗→qq̄(α, r2, Q2)

∣∣∣
2

2

∫

b

Re
〈
1− S(2)

xy

〉
Y

• Dipole operator

S
(2)
xy :=

1

Nc
tr



x+ = 0∞ −∞

γ∗
Ux

U†y

target initial statefinal state

background field

 =
tr

(
UxU

†
y

)
Nc

• Expectation value ⟨⟩ is average over background field configurations – contains
all information about target
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Equal Rapidity Example 2: qg Production 1/2

• Partonic level process: qg production in any nuclear–nuclear collision

q

g

target

Y

∆Y < 1/αs

Yin

• First deal with produced q:
dσq

dηpd2p
= xq(x) 1

(2π)2

∫
xx̄
e−ip·(x−x̄)

〈
S

(2)
xx̄

∣∣∣
Ū=U

〉
Y

S
(2)
xx̄ =

1

Nc
tr
(
UxŪ

†
x̄

)
=

1

Nc
tr




5. JIMWLK in the Langevin Formalism

5.2 Inclusive particle production

As mentioned at the beginning of this chapter, an important application of the
Langevin picture of JIMWLK evolution is in the study of particle production at
unequal rapidities. We now show why the Langevin JIMWLK equation is so well
suited for this purpose. As a simple example, we consider inclusive quark–gluon
production in a proton–nucleus collision, as was done in Paper [II]. The formulae
presented here extend naturally to other processes by modification of the relevant
operators and colour factors.

5.2.1 Inclusive particle production at equal rapidities

As a warm-up to the main topic of unequal rapidity correlators, we first consider
inclusive production of a quark and a gluon at parametrically similar rapidities
�Y . 1/↵s in an ultrarelativistic collision. The cross section contains a Wilson line
Ux for the quark in the direct amplitude (DA). The complex conjugate amplitude
(CCA) has a corresponding Hermitian conjugate Wilson line U †

x, which we write
with bars as Ū †

x̄ to make explicit that this is contained in the CCA. It is important
that quantities in the DA and the CCA remain distinct from each other throughout
the calculation.

Mathematically, the produced quark is represented in the cross section by a
fundamental dipole

S
(2)
xx̄ =

1

Nc

tr
⇣
UxŪ †

x̄

⌘
=

1

Nc

tr

0
BBBB@

x x̄
1
CCCCA

, (5.26)

where the dashed red line denotes the separation between the DA on the left and
the CCA on the right. The differential cross section at the parton level for inclusive
quark production is simply the Fourier-transformed expectation value of the dipole
multiplied by the quark distribution in the proton [87, 88]:

d�q

d⌘pd2p
= xq(x)

1

(2⇡)2

Z

xx̄

e�ip·(x�x̄)
D

S
(2)
xx̄

���
Ū=U

E
Y

. (5.27)

The quark has transverse momentum p, pseudo-rapidity ⌘p and longitudinal mo-
mentum fraction x. The xg(x) denotes the quark distribution in the proton and Y
refers to the relative rapidity between the produced quark and the target.

58

direct amplitude complex conjugate amplitude


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qg Production Example Continued

• Next, deal with produced g:

dσqg

dηpd2pdηkd2k
=

1

16π4

∫

xx̄

e−ip·(x−x̄)
〈
Hprod(k)S

(2)
xx̄

∣∣∣
Ū=U

〉
Y

• Production Hamiltonian Hprod(k)

:=
1

4π3

∫

yȳ

e−ik·(y−ȳ)

∫

uū

Ki
yuKi

ȳū

(
La

u − Ũ†ab
y Rb

u

)(
L̄a

ū − ¯̃U†ac
ȳ R̄c

ū

)

• La
u and Rb

u are Lie derivatives

La
uUx = −ig

a
x = u

, Ra
uUx = −ig

a
x = u

La
uU

†
x = ig

a
x = u

, Ra
uU

†
x = −ig

a
x = u
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Large Rapidity Separations

• Still qg production, but now ∆Y > 1/αs

q

g

target

Y

∆Y > 1/αs

Yin

• Separate rapidity range into two segments & discretise ∆Y range
Y 0

=Y
A

Y N
 =
YY 1 Y 2 …

Y i
n

gluon produced quark produced

Y � Y0 = N✏, ✏ ! 0, n = 0, ..., N

Ra
ux,n+1 = Ra

ux,n +
i✏gp
4⇡3

Z

z

Ki
xz[⌫̃i

z,n, Ra
ux,n � Ra

uz,n] � Nc

2

✏g2

4⇡3

Z

z

Kxxz(Ra
ux,n � Ra

uz,n) + O(✏3/2), (1)

D
Ô
E

YA

⌘
Z

[DU ]WYA
[U ]Ô.

U†
x ⌘ P exp

⇢
ig

Z
dx+↵a

x(x+)ta
�

3

distribution at Y of the Wilson lines in the target. These
Wilson lines U = U(x) ⌘ Ux are unitary, path-ordered
exponentials

U†
x ⌘ P exp

⇢
ig

Z
dx+↵a

x(x+)ta
�

, (2)

represented diagrammatically following [? ? ? ] as

U †
x =

target

projectile

interaction . (3)

x� projectile interaction target The lightcone time axis
runs from right to left in this notation. The Hermitian
conjugate Wilson line is denoted by an arrow facing the
opposite way:

Ux = . (4)

Here, ↵a
x is the color field generated by the target with

color index a = 1, ..., Nc and the t’s are the fundamental
generators of SU(Nc). An example of a simple observable
that is relevant in this context is the quark dipole

Ŝxy ⌘
tr
�

U†
xUy

�

Nc

=
1

Nc

tr

8
><
>:

x
y

9
>=
>;

. (5)

The dependence of the target color field on rapidity is
described by JIMWLK evolution. Here the CGC weight
function evolves from an initial condition Yin to a final Y
according to the JIMWLK equation

@

@Y
WY [U ] = HWY [U ]. (6)

Typically, a Gaussian distribution is used for the initial
condition WYin

, as in the McLerran-Venugopalan (MV)
[? ? ? ] model. The JIMWLK Hamiltonian is

H ⌘ 1

8⇡3

Z

uvz

Kuvz(La
u � Ũ†ab

z Rb
u)(La

v � Ũ†ac
z Rc

v), (7)

where tildes denote the adjoint representation and two-
dimensional coordinate space integrals are denoted with
the shorthand

�
u
⌘
�

d2u. The JIMLWK kernel is

Kuvz ⌘ Ki
uzKi

vz, (8)

where

Ki
uz =

(u � z)i

(u � z)2
(9)

is the Weizsäcker-Williams soft gluon emission kernel.
The L and R are “left” and “right” Lie derivatives2 that
act to color-rotate the Wilson lines on the left and right
sides of the target field, respectively. They are defined as

La
u ⌘ �ig(Uuta)↵�

�

�Uu,↵�

, (10)

Ra
u ⌘ �ig(taUu)↵�

�

�Uu,↵�

(11)

where ↵, � are matrix indices and �
�Uu

acts as an ordinary
functional derivative:

�

�Uu,↵�

Ux,�� = �↵�����
(2)(u � x) ⌘ �↵�����ux. (12)

We can represent the action of the Lie derivatives on
the Wilson lines as

Ra
uUx = �ig�uxtaUx = �ig

a

, (13)

La
uUx = �ig�uxUxta = �ig

a

. (14)

The Hermitian conjugates of these expressions give

Ra
uU †

x = ig�uxU †
xta = ig

a

, (15)

La
uU †

x = ig�uxtaU†
x = ig

a

. (16)

L and R are related to each other by

La
u = Ũ†ab

u Rb
u (17)

a

=

b

a, (18)

2 The naming of the derivatives may seem counter-intuitive, but
they appear on the opposite side to what is expected due to the
lightcone time axis running from right to left in our diagrammatic
notation.
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Ŝxy ⌘
tr
�

U†
xUy

�

Nc

=
1

Nc

tr

8
><
>:

x
y

9
>=
>;

. (5)

The dependence of the target color field on rapidity is
described by JIMWLK evolution. Here the CGC weight
function evolves from an initial condition Yin to a final Y
according to the JIMWLK equation

@

@Y
WY [U ] = HWY [U ]. (6)

Typically, a Gaussian distribution is used for the initial
condition WYin

, as in the McLerran-Venugopalan (MV)
[? ? ? ] model. The JIMWLK Hamiltonian is

H ⌘ 1

8⇡3

Z

uvz

Kuvz(La
u � Ũ†ab
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u = Ũ†ab

u Rb
u (17)

a

=

b

a, (18)

2 The naming of the derivatives may seem counter-intuitive, but
they appear on the opposite side to what is expected due to the
lightcone time axis running from right to left in our diagrammatic
notation.

3

distribution at Y of the Wilson lines in the target. These
Wilson lines U = U(x) ⌘ Ux are unitary, path-ordered
exponentials

U†
x ⌘ P exp

⇢
ig

Z
dx+↵a

x(x+)ta
�

, (2)

represented diagrammatically following [? ? ? ] as

U †
x =

target

projectile

interaction . (3)

x� projectile interaction target The lightcone time axis
runs from right to left in this notation. The Hermitian
conjugate Wilson line is denoted by an arrow facing the
opposite way:

Ux = . (4)

Here, ↵a
x is the color field generated by the target with

color index a = 1, ..., Nc and the t’s are the fundamental
generators of SU(Nc). An example of a simple observable
that is relevant in this context is the quark dipole
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Ŝxy ⌘
tr
�

U†
xUy

�

Nc

=
1

Nc

tr

8
><
>:

x
y

9
>=
>;

. (5)

The dependence of the target color field on rapidity is
described by JIMWLK evolution. Here the CGC weight
function evolves from an initial condition Yin to a final Y
according to the JIMWLK equation

@

@Y
WY [U ] = HWY [U ]. (6)

Typically, a Gaussian distribution is used for the initial
condition WYin

, as in the McLerran-Venugopalan (MV)
[62–64] model. The JIMWLK Hamiltonian is

H ⌘ 1

8⇡3

Z

uvz

Kuvz(La
u � Ũ†ab
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Ŝxx̄

E
Y �YA

=
D
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Ŝxx̄

E
Y �YA

����
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u = Ũ†ab

u Rb
u (17)

a

=

b

a, (18)

2 The naming of the derivatives may seem counter-intuitive, but
they appear on the opposite side to what is expected due to the
lightcone time axis running from right to left in our diagrammatic
notation.

3

distribution at Y of the Wilson lines in the target. These
Wilson lines U = U(x) ⌘ Ux are unitary, path-ordered
exponentials

U†
x ⌘ P exp

⇢
ig

Z
dx+↵a

x(x+)ta
�

, (2)

represented diagrammatically following [? ? ? ] as

U †
x =

target

projectile

interaction . (3)

x� projectile interaction target The lightcone time axis
runs from right to left in this notation. The Hermitian
conjugate Wilson line is denoted by an arrow facing the
opposite way:

Ux = . (4)

Here, ↵a
x is the color field generated by the target with

color index a = 1, ..., Nc and the t’s are the fundamental
generators of SU(Nc). An example of a simple observable
that is relevant in this context is the quark dipole
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• New cross section

dσqg

dY d2pdYAd2kA
=

1

16π4

∫

xx̄

e−ip·(x−x̄)

〈
Hprod(kA)

〈
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(2)
xx̄,N

〉
ν
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ŪA=UA

〉

YA

• Evaluation of nested correlators

〈
Hprod(kA)

〈
S

(2)
xx̄,N

〉
ν

∣∣∣
ŪA=UA

〉

YA

:

• Evolve S
(2)
xx̄ from YA = Y0 to Y = YN• Set all barred quantities to barred ones (no more distinguishing between direct

and complex conjugate amplitudes)
• Act with Hprod(kA) at YA• Evolve from target rapidity Yin to YA
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Wilson Line Evolution Equation

• Langevin JIMWLK evolution equation for Wilson line

U†
x,n+1 = exp

{
iϵgαL

x,n

}
U†

x,n exp
{
−iϵgαR

x,n

}

• Fields colour rotate Wilson lines (cf. Lie derivatives)
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xzν
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αL
x,0Ux,0 =
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4π3
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z

Ki
xzν

a,i
z,0 ba

b
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Bilocal Evolution Equations

• Hprod(kA)
〈
S

(2)
xx̄,N

〉
=⇒ need to evolve LU,RU,LU†, RU† (only one of

four evolution equations needed – other three can be derived from taking
Hermitian conjugate and/or using relation La

u = Ũ†ab
u Rb

u)
• E.g.
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Preliminary Numerical Results: Dipole Correlator

• Study evolution equations for U†
x,n and Ra

u,0U
†
x,n+1 on lattice, fixed coupling,

MV model initial condition
• Look at inclusive qg production cross section

dσqg

dY d2pdYAd2kA
∼

〈
Hprod(kA)

〈
S

(2)
xx̄,N

〉
ν

∣∣∣
ŪA=UA

〉

YA

• Dipole correlator as function of transverse coordinate separation at various
rapidities
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• Two-particle correlation as function of ϕ (p is quark moment, k is gluon
momentum)
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Summary

• Want to understand particle correlations over large rapidity separations

• CGC effective theory is useful

• CGC formalism with DIS example

• Inclusive qg production at equal rapidities

• Extension of inclusive qg production to unequal rapidities

• Preliminary numerical results
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