Unequal Rapidity Correlators from a Numerical Implementation of JIMWLK

Tuomas Lappi, Andrecia Ramnath, Sören Schlichting

20 June 2023
Initial Stages, Copenhagen, Denmark

Outline

- Motivation
- Colour Glass Condensate formalism
- Equal rapidity correlators: example 1 - DIS
- Equal rapidity correlators: example 2 - $q g$ production
- $q g$ production at unequal rapidities
- Preliminary numerical results

Motivation

- Origin of structure of azimuthal correlations in small systems ($p p, p A$) not fully understood
- Azimuthal correlations extend far in rapidity
- Such correlations must originate early in collision

(b)

Dumitru, Gelis, McLerran, Venugopalan, Nucl.
Phys. A810 (2008) 91

```
CMS, Phys. Lett. B 718 (2013)}79
```


Colour Glass Condensate

- Colour Glass Condensate (CGC) is suitable framework for studying correlations with large rapidity separations $\left(\Delta Y>1 / \alpha_{\mathrm{s}}\right) \rightarrow$ "unequal rapidity correlators". In practical calculations: renormalisation group equations, Wilson lines, etc. evolve in rapidity
- Most common phenomenological applications consider correlations with small rapidity separations $\left(\Delta Y \leq 1 / \alpha_{\mathrm{s}}\right) \rightarrow$ "equal rapidity correlators". E.g. DIS, single inclusive particle production, multi-particle production
- Recent work on extending calculations to include large rapidity separations:
- Dense-dense formalism

> Gelis, Lappi, Venugopalan, Phys. Rev. D79 (2008) 094017,
> Lappi, Acta Phys. Polon. B40 (2009) 1997 \& Nucl. Phys. A910-911 (2013) 518

- Phenomenological applications

Schenke, Schlichting, Phys. Rev. C94 (2016) 044907

- Multi-particle correlations in small collision systems

```
Dusling, Gelis, Lappi, Venugopalan, Nucl. Phys. A836 (2010) 159
Kovner, Lublinsky, Phys. Rev. D83 (2011) 034017 \& Phys. Rev. D84 (2011) 094011
Dumitru, Dusling, Gelis, Jalilian-Marian, Lappi, Venugopalan, Phys. Lett. B697 (2011) 21
Dusling, Venugopalan, Phys. Rev. Lett. 108 (2012) 262001 \& Phys. Rev. D87 (2013) 051502 \& Phys. Rev. D87 (2013) 054014
```


Equal Rapidity Example 1: DIS

- Consider ep collision:

- QCD interaction between projectile and target through $q \bar{q}$ dipole

Marquet, Weigert, Nucl. Phys. A843 (2010) 68-97

DIS Example Continued

- Wilson lines colour-rotate projectile - basic building blocks of CGC calculations

- DIS cross section

$$
\sigma^{\gamma^{*} p}\left(x, Q^{2}\right)=\int_{\boldsymbol{r}} \int_{0}^{1} \mathrm{~d} \alpha\left|\psi^{\gamma^{*} \rightarrow q \bar{q}}\left(\alpha, \boldsymbol{r}^{2}, Q^{2}\right)\right|^{2} 2 \int_{b} \operatorname{Re}\left\langle 1-S_{x y}^{(2)}\right\rangle_{Y}
$$

- Dipole operator

$$
S_{\boldsymbol{x} \boldsymbol{y}}^{(2)}:=\frac{1}{N_{\mathrm{c}}} \operatorname{tr}\left(\begin{array}{c}
U_{\boldsymbol{y}}^{\dagger} \\
\hdashline \text { backgr } \\
\hline
\end{array}\right)=\frac{\operatorname{tr}\left(U_{\boldsymbol{x}} U_{\boldsymbol{y}}^{\dagger}\right)}{N_{\mathrm{c}}}
$$

- Expectation value \rangle is average over background field configurations - contains all information about target

Equal Rapidity Example 2: $q g$ Production 1/2

- Partonic level process: $q g$ production in any nuclear-nuclear collision

Altinoluk, Kovner, Phys. Rev. D 83 (2011) 105004
Chirilli, Xiao, Yuan, Phys. Rev. D 86 (2012) 054005

- First deal with produced $q: \frac{\mathrm{d} \sigma_{\mathrm{q}}}{\mathrm{d} \eta_{p} \mathrm{~d}^{2} p}=x q(x) \frac{1}{(2 \pi)^{2}} \int_{\boldsymbol{x} \overline{\boldsymbol{x}}} e^{-i \boldsymbol{p} \cdot(\boldsymbol{x}-\overline{\boldsymbol{x}})}\left\langle\left. S_{x \overline{\boldsymbol{x}}}^{(2)}\right|_{\bar{U}=U}\right\rangle_{Y}$

$q g$ Production Example Continued

- Next, deal with produced g :

Hentschinski, Weigert, Schafer, Phys. Rev. D 73 (2006) 051501
Kovner, Lublinsky, Weigert, Phys. Rev. D 74 (2006) 114023
Kovner, Lublinsky, JHEP 11 (2006) 083

$$
\frac{\mathrm{d} \sigma_{\mathrm{qg}}}{\mathrm{~d} \eta_{p} \mathrm{~d}^{2} p \mathrm{~d} \eta_{k} \mathrm{~d}^{2} k}=\frac{1}{16 \pi^{4}} \int_{\boldsymbol{x} \overline{\boldsymbol{x}}} e^{-i \boldsymbol{p} \cdot(\boldsymbol{x}-\overline{\boldsymbol{x}})}\left\langle\left. H_{\mathrm{prod}}(\boldsymbol{k}) S_{\boldsymbol{x} \overline{\boldsymbol{x}}}^{(2)}\right|_{\bar{U}=U}\right\rangle_{Y}
$$

- Production Hamiltonian $H_{\text {prod }}(\boldsymbol{k})$

$$
:=\frac{1}{4 \pi^{3}} \int_{\boldsymbol{y} \overline{\boldsymbol{y}}} e^{-i \boldsymbol{k} \cdot(\boldsymbol{y}-\overline{\boldsymbol{y}})} \int_{\boldsymbol{u} \overline{\boldsymbol{u}}} \mathcal{K}_{\boldsymbol{y} \boldsymbol{u}}^{i} \mathcal{K}_{\overline{\boldsymbol{y}} \bar{u}}^{i}\left(L_{\boldsymbol{u}}^{a}-\tilde{U}_{\boldsymbol{y}}^{\dagger a b} R_{\boldsymbol{u}}^{b}\right)\left(\bar{L}_{\overline{\boldsymbol{u}}}^{a}-\overline{\tilde{U}}_{\overline{\boldsymbol{y}}}^{\dagger a c} \bar{R}_{\bar{u}}^{c}\right)
$$

- L_{u}^{a} and R_{u}^{b} are Lie derivatives

Large Rapidity Separations

- Still $q g$ production, but now $\Delta Y>1 / \alpha_{\mathrm{s}}$

- Separate rapidity range into two segments \& discretise ΔY range

Modified Cross Section for $q g$ Production

- New cross section

$$
\frac{\mathrm{d} \sigma_{q g}}{\mathrm{~d} Y \mathrm{~d}^{2} p \mathrm{~d} Y_{\mathrm{A}} \mathrm{~d}^{2} k_{\mathrm{A}}}=\frac{1}{16 \pi^{4}} \int_{\boldsymbol{x} \overline{\boldsymbol{x}}} e^{-i \boldsymbol{p} \cdot(\boldsymbol{x}-\overline{\boldsymbol{x}})}\left\langle\left. H_{\mathrm{prod}}\left(\boldsymbol{k}_{\mathrm{A}}\right)\left\langle S_{\boldsymbol{x} \overline{\boldsymbol{x}}, N}^{(2)}\right\rangle_{\nu}\right|_{\bar{U}_{\mathrm{A}}=U_{\mathrm{A}}}\right\rangle_{Y_{\mathrm{A}}}
$$

- Evaluation of nested correlators $\left\langle\left. H_{\text {prod }}\left(\boldsymbol{k}_{\mathrm{A}}\right)\left\langle S_{x \bar{x}, N}^{(2)}\right\rangle_{\nu}\right|_{\bar{U}_{\mathrm{A}}=U_{\mathrm{A}}}\right\rangle_{Y_{\mathrm{A}}}$:
- Evolve $S_{x \bar{x}}^{(2)}$ from $Y_{A}=Y_{0}$ to $Y=Y_{N}$
- Set all barred quantities to barred ones (no more distinguishing between direct and complex conjugate amplitudes)
- Act with $H_{\text {prod }}\left(\boldsymbol{k}_{\mathrm{A}}\right)$ at Y_{A}
- Evolve from target rapidity $Y_{\text {in }}$ to Y_{A}
- Langevin JIMWLK evolution equation for Wilson line

$$
U_{\boldsymbol{x}, n+1}^{\dagger}=\exp \left\{i \epsilon g \alpha_{\boldsymbol{x}, n}^{\mathrm{L}}\right\} U_{\boldsymbol{x}, n}^{\dagger} \exp \left\{-i \epsilon g \alpha_{\boldsymbol{x}, n}^{\mathrm{R}}\right\}
$$

- Fields colour rotate Wilson lines (cf. Lie derivatives)

$$
\begin{aligned}
& \alpha_{\boldsymbol{x}, 0}^{\mathrm{L}} U_{\boldsymbol{x}, 0}=\frac{1}{\sqrt{4 \pi^{3}}} \int_{\boldsymbol{z}} \mathcal{K}_{\boldsymbol{x} \boldsymbol{z}}^{i} \nu_{\boldsymbol{z}, 0}^{a, i}
\end{aligned}
$$

Bilocal Evolution Equations

- $H_{\text {prod }}\left(\boldsymbol{k}_{\mathrm{A}}\right)\left\langle S_{x \overline{\boldsymbol{x}}, N}^{(2)}\right\rangle \Longrightarrow$ need to evolve $L U, R U, L U^{\dagger}, R U^{\dagger}$ (only one of four evolution equations needed - other three can be derived from taking Hermitian conjugate and/or using relation $L_{u}^{a}=\tilde{U}_{\boldsymbol{u}}^{\dagger a b} R_{u}^{b}$)
- E.g.

$$
\begin{aligned}
& R_{\boldsymbol{u}, 0}^{a} U_{\boldsymbol{x}, n+1}^{\dagger}=e^{i \epsilon g \alpha_{\boldsymbol{x}, n}^{\mathrm{R}}} R_{\boldsymbol{u}, 0}^{a} U_{\boldsymbol{x}, n}^{\dagger} e^{-i \epsilon g \alpha_{\boldsymbol{x}, n}^{\mathrm{L}}} \\
& \quad-\frac{i \epsilon g}{\sqrt{4 \pi^{3}}} e^{i \epsilon g \alpha_{\boldsymbol{x}, n}^{\mathrm{R}}} U_{\boldsymbol{x}, n}^{\dagger} \int_{\boldsymbol{z}} \mathcal{K}_{\boldsymbol{x} \boldsymbol{z}}^{i}\left[U_{\boldsymbol{z}, n} \nu_{\boldsymbol{z}, n}^{i} U_{\boldsymbol{z}, n}^{\dagger}, U_{\boldsymbol{z}, n} R_{\boldsymbol{u}, 0}^{a} U_{\boldsymbol{z}, n}^{\dagger}\right]+\mathcal{O}\left(\nu \epsilon^{2}\right)
\end{aligned}
$$

- One step:

$$
R_{\boldsymbol{u}, 0}^{a} U_{\boldsymbol{x}, 1}^{\dagger}=i g^{\text {siz }}
$$

Preliminary Numerical Results: Dipole Correlator

- Study evolution equations for $U_{\boldsymbol{x}, n}^{\dagger}$ and $R_{\boldsymbol{u}, 0}^{a} U_{\boldsymbol{x}, n+1}^{\dagger}$ on lattice, fixed coupling, MV model initial condition
- Look at inclusive $q g$ production cross section

$$
\frac{\mathrm{d} \sigma_{q g}}{\mathrm{~d} Y \mathrm{~d}^{2} p \mathrm{~d} Y_{\mathrm{A}} \mathrm{~d}^{2} k_{\mathrm{A}}} \sim\left\langle\left. H_{\text {prod }}\left(\boldsymbol{k}_{\mathrm{A}}\right)\left\langle S_{x \bar{x}, N}^{(2)}\right\rangle_{\nu}\right|_{\bar{U}_{\mathrm{A}}=U_{\mathrm{A}}}\right\rangle_{Y_{\mathrm{A}}}
$$

- Dipole correlator as function of transverse coordinate separation at various rapidities

- Two-particle correlation as function of ϕ (\boldsymbol{p} is quark moment, \boldsymbol{k} is gluon momentum)

Summary

- Want to understand particle correlations over large rapidity separations
- CGC effective theory is useful
- CGC formalism with DIS example
- Inclusive $q g$ production at equal rapidities
- Extension of inclusive $q g$ production to unequal rapidities
- Preliminary numerical results

