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- Different probes can be used to investigate the nuclear structure and the QCD nature of nuclear collisions.  

In this talk: 


- Photons emitted in Ultra-Peripheral Collisions  (UPC)


- Intense EM fields provide a flux of quasi-real photons


- A photon from one nucleus can interact strongly with the other,  

effectively probing the nuclear structure 


- Proton-ion collisions 


- Strongly interacting probe


- Can be used to investigate QCD and nuclear structure 


- Dijet events provide direct access to the hard scattering kinematics 


- Detailed mapping of IS nuclear (nPDFs) and QCD (color transparency) effects


- Measurements span remarkable kinematic phase space for such measurements thanks to the acceptance of the ATLAS Calorimeter 
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DIJET PROBES FOR INITIAL STATE EFFECTS

ATLAS 
CONF


2023-011

https://cds.cern.ch/record/2806461/files/ATLAS-CONF-2022-021.pdf
https://cds.cern.ch/record/2854842/files/ATLAS-CONF-2023-011.pdf
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- Understanding of initial state effects is a key to interpret 

PHOTO-NUCLEAR EVENTS
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“Direct” photons


scatter off
  

the nucleus 

“Resolved” photons 

scatter through a 

virtual hadronic 

excitation of the 
photon

These photons can scatter 
off the nucleus and 
resolve nuclear partons!
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- Understanding of initial state effects is a key to interpret 

DIJET PRODUCTION IN PHOTO-NUCLEAR EVENTS
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“Direct” photons


scatter off
  

the nucleus 

HT = ∑
i

pi
T

xA =
Mjetse−yjets

SNN

zγ =
Mjetse+yjets

SNN

Jet kinematics are proxy 
to hard-scattering 

kinematics, directly 
probing nuclear PDF 

(nPDF) effects.

ATLAS-CONF-2022-021

“Resolved” photons 

scatter through a 

virtual hadronic 

excitation of the 
photon

These photons can scatter 
off the nucleus and 
resolve nuclear partons!

https://cds.cern.ch/record/2806461/files/ATLAS-CONF-2022-021.pdf
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- Understanding of initial state effects is a key to interpret 

CONSTRAINING nPDFs
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HT = ∑
i

pi
T

xA =
Mjetse−yjets

SNN

zγ =
Mjetse+yjets

SNN

- nPDFs are a key 
ingredient for several 
precision 
measurements 


- Poorly constrained at 
intermediate Q2 and low-x


- 100 < Q2/GeV2 < 1000 
region has very little 
input from data


- Nuclear shadowing at 
low-x draws particular 
theoretical interest 


- Test of sensitivity  
[Helenius, 2018]

ATLAS-CONF-2022-021

Jet kinematics are proxy 
to hard-scattering 

kinematics, directly 
probing nuclear PDF 

(nPDF) effects.

https://arxiv.org/abs/1811.10931
https://cds.cern.ch/record/2806461/files/ATLAS-CONF-2022-021.pdf
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EVENT SELECTION 
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- 0nXn requirement for nuclear 
breakup in exactly one ATLAS Zero-
Degree Calorimeter (ZDC) 

- Further cleaning from hadronic 
interactions, 𝜸 𝜸 and diffractive photo-

production by applying rapidity gap 
cuts, e.g.   and  

- At least two particle-Flow jets with 
 to access the full kinematics 

of the hard-scattering 


∑
γ

Δη > 2.5 ΔηA < 3

pT > 15 GeV

HT = ∑
i

pi
T

xA =
Mjetse−yjets

SNN

zγ =
Mjetse+yjets

SNN

ATLAS-CONF-2022-021

https://cds.cern.ch/record/2806461/files/ATLAS-CONF-2022-021.pdf
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SYSTEMATICS 
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- Systematic uncertainties are the current main limiting factor in our sensitivity to nPDFs 


- Jet Energy Scale and Jet Energy Resolution ~ 5-10% 


- Control over the low-μ calibration is currently the dominant source of uncertainty


- Additional systematic uncertainties are assigned for the unfolding procedure and event selection

ATLAS-CONF-2022-021

https://cds.cern.ch/record/2806461/files/ATLAS-CONF-2022-021.pdf
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RESULTS: PHOTON FLUX  
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HT = ∑
i

pi
T, xA =

Mjetse−yjets

SNN
, zγ =

Mjetse+yjets

SNN

- The measured cross-sections are unfolded in 3 dimensions to 
correct for detector effects 


-  dependence of the cross-section over a narrow  interval 
(0.015-0.2) should be primarily determined by the photon flux 


- These results provide input to constrain theoretical models of 
both photon flux and breakup probability for the photon-
emitting nucleus 


- The breakup model performs well within systematic 
uncertainties


- Disagreements appear to arise at low , where the model 
seems to overcorrect 

zγ xA

zγ

ATLAS-CONF-2022-021

https://cds.cern.ch/record/2806461/files/ATLAS-CONF-2022-021.pdf
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RESULTS: SCAN IN PHOTON ENERGY 
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- Scanning results in 
terms of the photon 
energy allows one to 
resolve different 
partonic kinematic 
regimes


- Provides new input to 
constrain nPDFs 

0.004 <  < 0.008zγ

Intermediate photon energies provide access 
to higher-x parton in the nucleus 

Credit: B.Gilbert

ATLAS-CONF-2022-021

https://cds.cern.ch/record/2806461/files/ATLAS-CONF-2022-021.pdf
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RESULTS: SCAN IN PHOTON ENERGY 
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Increasing the photon 
energy enhances the 
resolution power and 
probes the low-x 
shadowing region 

Results show quite good consistency with 
theoretical model 

0.008 <  < 0.015zγ

ATLAS-CONF-2022-021

Credit: B.Gilbert

https://cds.cern.ch/record/2806461/files/ATLAS-CONF-2022-021.pdf
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RESULTS: SCAN IN PHOTON ENERGY 
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0.015 <  < 0.027zγ

Systematic control more challenging when 
approaching acceptance edges 

Highest photon 
energies allow for 
exploration of the 
lowest x region (~10-3)

ATLAS-CONF-2022-021

Credit: B.Gilbert

https://cds.cern.ch/record/2806461/files/ATLAS-CONF-2022-021.pdf
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CHANGING THE PROBE: p+Pb COLLISIONS 
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- Measurement of inclusive jets in p+Pb 
collisions also provide input to nPDF studies 


- 5.02 TeV ATLAS p+Pb data


- : no evidence for large modification 
of the total yield of jets relative to the 
geometric expectation observed 
PLB 748 (2015) 392–413


- Also, no jet quenching evidence in p+Pb 
- new strong constraints reported by 
ATLAS 
Arxiv:2206.01138, accepted PRL


- Observed deviation in jet production 
should be attributed to different 
effects
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- Intriguing results from the measurement of centrality dependence of inclusive jet 
production


-  results - suppression of the jet production in central events compared to    

peripheral events at all   at forward rapidities and for large  at mid-rapidity, 
PLB 748 (2015) 392–413
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https://www.sciencedirect.com/science/article/pii/S037026931500533X?via=ihub
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- Intriguing results from the measurement of centrality dependence of inclusive jet 
production


-  results - suppression of the jet production in central events compared to    

peripheral events at all   at forward rapidities and for large  at mid-rapidity, 
PLB 748 (2015) 392–413


- Found to be a function of the total jet energy only - suggesting direct relation 
with the hard parton-parton scattering.

RCP

pT pT

Ejet ∼

https://www.sciencedirect.com/science/article/pii/S037026931500533X?via=ihub
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p containing a parton with large 𝑥 interacts with a 
nuclear target with smaller than average cross-
section and smaller than average size (manifestation 
of color fluctuations - example of color transparency) 

p w/ average 
configuration     

p w/ high-  
parton     

x Sketch from Alvioli et al., PRD 98 (2018) 071502

https://doi.org/10.1103/PhysRevD.98.071502
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CENTRALITY DEPENDENCE OF DIJET PRODUCTION

The study of dijets in p+Pb collisions at 8.16 TeV offers unique 
opportunity to advance the understanding of the centrality 

dependence of jet production in p+Pb collisions

Ejet ∼
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- 165 nb-1 of p+Pb data collected in 2016 (Largest p+Pb dataset collected to date by ATLAS)


- Anti-kt R = 0.4 calorimeter jets 


- Enough luminosity for measurement of the centrality-dependence  
of the triple differential per-event dijet yield


- Average transverse momentum:   


- Boost of Dijet System:  


- Dijet Half Rapidity Separation:  


- 3D measurement provides access to  
partonic system kinematics 

pT,Avg =
pT,1 + pT,2

2

yb =
1
2

(yCM
1 + yCM

2 )

y* =
1
2

|yCM
1 − yCM

2 |

m1,2 = ̂s = xpxPbs,

xp ≃
2pT,Avg

s
eyb cosh y*,

xPb ≃
2pT,Avg

s
e−yb cosh y*

1
Ncent

evt

d3Ncent
dijet

dpT,Avgdybdy*

CENTRALITY DEPENDENCE OF DIJET PRODUCTION
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ATLAS  Preliminary
-1 = 8.16 TeV, L = 165 nbNNs

+Pbp R = 0.4, tkanti-

ATLAS-CONF-2023-011 Backward Forwardp

- Measurement that scans the internal 
structure of the p and the Pb over four 
orders of magnitude


- Unfolding of detector effects in  
distributions using 1D bayesian approach


- Allowed by limited migration in  and  
(accounted for w/ an efficiency correction) 


- The measurement is not directly carried 
out in parton system kinematic variables 

pT,Avg

yb y*
m1,2 = ̂s = xpxPbs,

xp ≃
2pT,Avg

s
eyb cosh y*, xPb ≃

2pT,Avg

s
e−yb cosh y*

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-011/
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- Centrality determined using  in the Pb-going arm 
of the FCal (see Eur. Phys. J. C 76 (2016) 199)


- Best sensitivity to collision geometry 


- Method successfully applied in former ATLAS p+Pb 
Analyses (PLB 748 (2015) 392–413) 

ΣET

- Centrality determination fully separated 
from the analysis thanks to fiducial cut 
on  of leading and sub-leading jet


- Two centrality classes considered in the 
analysis: 


- 0-20%  Central events


- 60-90% Peripheral events


η

→

→

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-011/
https://doi.org/10.1140/epjc/s10052-016-4002-3
https://www.sciencedirect.com/science/article/pii/S037026931500533X?via=ihub
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- Constructed to study the centrality dependence of the dijet 
production in p+Pb collisions 


- Partial cancellation of correlated systematics in the ratio 
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 definition RCP

R
0 − 20 %
60 − 90 %
CP (pT,Avg, yb, y*) =
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⟨T0−20%
AB ⟩

1
N0−20%

evt
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dijet

dpT,Avgdybdy*
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N60−90%
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dijet
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Central 
dijet yield

Peripheral 
dijet yield

Nuclear overlap function 

- Standard Glauber Monte Carlo techniques [SoftwareX 1-2 (2015) 13-18]  
to determine the relation between the mean number of participants and 
the event geometry
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https://arxiv.org/pdf/1408.2549.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-011/
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- General trend: increasing 
suppression with  , and  
(  of dijets with a more 
forward boost is more 
suppressed)
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pT,Avg yb
RCP

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-011/
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Approximated parton-level kinematics in each bin 

xp ≃
2pT,Avg

s
e⟨yb⟩ cosh⟨y*⟩, xPb ≃

2pT,Avg

s
e−⟨yb⟩ cosh⟨y*⟩

m1,2 = xpxPbs ≃ 2pT,Avg cosh⟨y*⟩

• The parton-level kinematics in each bin can be 
approximated by using the average value of  and 

 in each kinematic bin  


• For , the center of the bin is used 

yb
y*
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Approximated parton-level kinematics in each bin 

xp ≃
2pT,Avg

s
e⟨yb⟩ cosh⟨y*⟩, xPb ≃

2pT,Avg

s
e−⟨yb⟩ cosh⟨y*⟩

m1,2 = xpxPbs ≃ 2pT,Avg cosh⟨y*⟩

• The parton-level kinematics in each bin can be 
approximated by using the average value of  and 

 in each kinematic bin  


• For , the center of the bin is used 
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Values of  found to be 
localized in the range 

, where 
anti-shadowing effects in the 
nucleus are expected. 

RCP > 1

∼ 10−2 < xPb < ∼ 2 ⋅ 10−1

Overall, an increasing  suppression while moving 
towards low-  is observed 
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- ATLAS can measure dijet events over a wide kinematic range to investigate the 
nuclear structure and the QCD nature in nuclear collisions. 


- Measurement of triple differential cross-section of photonuclear jet 
production in 2018 5.02 TeV Pb+Pb collisions using particle flow jets


- Preliminary results are sensitive to nPDF effects


- Ongoing effort to substantially reduce systematic uncertainty due to 
low-μ jet response and enhance the sensitivity of the results 
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- ATLAS can measure dijet events over a wide kinematic range to investigate the 
nuclear structure and the QCD nature in nuclear collisions. 


- Measurement of triple differential cross-section of photonuclear jet 
production in 2018 5.02 TeV Pb+Pb collisions using particle flow jets


- Preliminary results are sensitive to nPDF effects


- Ongoing effort to substantially reduce systematic uncertainty due to 
low-μ jet response and enhance the sensitivity of the results 


- Measurement of the centrality dependence of the dijet yield in p+Pb 
collisions at 8.16 TeV 


- Triple-differential dijet yield analysis allows for detailed mapping of the 
results in terms of approximated partonic system 


- The results suggest that the observed trend is governed by physics effects 
similar to  those probed in the inclusive production of jets in p+Pb collisions 
at 5.02 TeV, related to color transparency manifestation!
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Results closely related to 
early physics goals of the 
EIC!

- ATLAS can measure dijet events over a wide kinematic range to investigate the 
nuclear structure and the QCD nature in nuclear collisions. 


- Measurement of triple differential cross-section of photonuclear jet 
production in 2018 5.02 TeV Pb+Pb collisions using particle flow jets


- Preliminary results are sensitive to nPDF effects


- Ongoing effort to substantially reduce systematic uncertainty due to 
low-μ jet response and enhance the sensitivity of the results 


- Measurement of the centrality dependence of the dijet yield in p+Pb 
collisions at 8.16 TeV 


- Triple-differential dijet yield analysis allows for detailed mapping of the 
results in terms of approximated partonic system 


- The results suggest that the observed trend is governed by physics effects 
similar to  those probed in the inclusive production of jets in p+Pb collisions 
at 5.02 TeV, related to color transparency manifestation!
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JETS  IN p+Pb: FURTHER INTERPRETATIONS (& DATA)
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• Suppression of soft particle production dependent on the amount of 
energy removed from the projectile proton 
PRC 93 (2016) 044901


• Kinematic bias introduced by energy momentum conservation between 
the hard process and the production of soft particles PLB 747 (2015) 
441


• Suppression of soft particle production away from the jet, caused by the 
depletion of energy available in the proton after the production of a 
hard jet 
PRC 97 (2018) 5, 054904

Measurement of the dependence of transverse energy  production at 
large pseudorapidity on the hard-scattering  kinematics of pp collisions at 

 with  ATLAS 
PLB 756 (2016) 10–28


s = 2.76 TeV

Fractional momentum of 
the initial state partons 
extracted from target and 
projectile  

https://doi.org/10.1103/PhysRevC.93.044901
https://doi.org/10.1016/j.physletb.2015.06.032
https://doi.org/10.1016/j.physletb.2015.06.032
https://doi.org/10.1016/j.physletb.2015.06.032
https://doi.org/10.1016/j.physletb.2015.06.032
https://doi.org/10.1103/PhysRevC.97.054904
https://doi.org/10.1016/j.physletb.2016.02.056
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RCP: SYSTEMATIC UNCERTAINTY 
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• Dominant source of systematic uncertainty on the  is associated to the Jet Energy Resolution (JER) 

• Other uncertainties assigned are associated to the Jet Energy Scale (JES), the unfolding procedure, the 

exclusion of a portion of the Hadronic Endcap Calorimeter (HEC) that was disabled during the 2016 
run  and the evaluation of the nuclear overlap function 


• All of the systematic uncertainties, except for the one related to the unfolding, are treated as 
correlated in the 

RCP

TAB

RCP
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XnXn EVENTS 
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- Photo-nuclear jet events requirements select events with high-energy photons 


-  ➡ Bias toward lower impact parameter of the collisions Eγ ∝ 1/b

Basic theoretical modeling 
predicts an even higher rate

Studies of dijet events with large 
gaps on one side estimate about 
50% of photo-nuclear jet 
production breaks up!
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DIJET PRODUCTION W/O NUCLEAR BREAKUP
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- Tagged requiring 0n0n pattern in the ATLAS ZDC and gaps on both side of the detector 


- Originated by 𝜸 𝜸 scattering or diffractive photo-production


- A factor of 10 more events are observed in data than are predicted from 𝜸 𝜸 →jets, estimated by Pythia
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THEORETICAL MODEL OF NUCLEAR BREAKUP 
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- Pythia8 allows for generation of 𝜸+A collisions


- The photons is taken from the equivalent flux of a lepton or a nucleon beam 


- Photon energy distribution treated as an attribute of one of the incident beams and not a feature of the full 
collision system → can’t fully describe UPC 


- New integrated flux factor introduced to improve comparison with data. It includes: 


- Integration over A-A impact parameter (b) and impact parameter relative to the photon emitting nucleus (sA)


- Correction for the probability of no hadronic or electromagnetic breakup occurs (from STARlight) 


- Correction to Pythia8 point source treatment to turn it into coherent nuclear emission.


- Nuclear thickness function 
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JET RECONSTRUCTION PERFORMANCE IN Pb+Pb
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- Small deviations in the jet energy scale arise due to differences between the 
sample in which the calibration was derived (inclusive jets in  = 13 TeV 
pp collisions) and this one due to the fact that the calibration is derived and 
applied as a function of E and not pT.


- Better resolution at low pT compared to pp thanks to lower pile-up level in 
Pb+Pb 


- All the JES and JER effects corrected for at level of unfolding of the detector 
effects 

s
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JET RECONSTRUCTION PERFORMANCE IN p+Pb
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• Jet Energy Resolution (JER) and Jet 
Energy Scale (JES) compatible 
between the two beam orientations


• JES and JER corrected for at level of 
unfolding 


• Jet reconstruction efficiency > 99% in 
all the η regions of the calorimeter for  

 


• No significant dependence on the 
centrality of the collision 
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