

Measurement of the Sensitivity of Two-Particle Correlations in *pp* Collisions to the Presence of Hard Scatterings

Pengqi Yin, Columbia University, For the ATLAS Collaboration

This work was supported by the United States Department of Energy Grant DOE-FG02-86ER-40281

Ridge in small system

Collective flow

Arise from collective behavior? Artifact of semi-hard processes?

<u>Method</u>

- Jets are reconstructed using particle-flow algorithm (Eur. Phys. J. C 77 (2017) 466)
 - $p_{\rm T}$ > 15 GeV, $|\eta|$ < 4.5
 - Excluding particles within $|\Delta \eta| < 1$ of jets
- Measure 2PC
 - between two tracks not associated with jets
 - *h^{UE}-h^{UE}*

Pengqi Yin, IS 2023, 21 Jun 2023

<u>Method</u>

- Jets are reconstructed using particle-flow algorithm (Eur. Phys. J. C 77 (2017) 466)
 - $p_{\rm T}$ > 15 GeV, $|\eta|$ < 4.5
 - Excluding particles within $|\Delta \eta| < 1$ of jets
- Measure 2PC
 - between two tracks not associated with jets
 - *h^{UE}-h^{UE}*: (requiring the presence or absence of jets)
 - between tracks that are constituents of jets and tracks from the UE
 - h^{UE}-h^J

Pengqi Yin, IS 2023, 21 Jun 2023

Problem

- From previous studies, we know there is a global modulation due to elliptic flow. Not fluctuation!
 - Particles from this flow mainly have low $p_{\rm T}$.
 - Around 0 and pi, more particles due to the modulation.
 - When a jet appear around 0 or π , reconstruction will catch more of these UE particles.
- The modulation provides a bias on jet $p_{\rm T}$

Problem

- The UE bias was studied by overlying PYTHIA8 event onto pp minimum-bias data
 - PYTHIA8 with MPI off and ISR on
- A strong modulation of jet yield vs $\phi^{\text{jet}} \Psi_2^{\text{Data}}$ is observed
 - Event plane angle Ψ_2^{Data} is measured in the pp data before overlay
 - $\phi^{\rm jet}$ is reconstructed taking particles from data and PYTHIA together, after overlay

- After trying a number of grooming and correction methods, the best suppression of UE bias was obtained by introducing a minimum $p_{\rm T}$ on jet constituents
- The jet $p_{\rm T}$ is redefined by summing constituents above 4 GeV: $p_{\rm T}^{\rm G} = \sum_{r}$

 $\boldsymbol{p}_{\mathrm{T}}^{> 4 \mathrm{GeV}_{\mathrm{I}}}$

lconstituents

Selections

• h-h

- h^{UE}-h^{UE} AllEvents
- h^{UE}-h^{UE} NoJets
- h^{UE}-h^{UE} WithJets
- *h^{UE}-h^J*

Selections

• *h-h*

- h^{UE}-h^{UE} AllEvents
- h^{UE}-h^{UE} NoJets
- h^{UE}-h^{UE} WithJets

• *h^{UE}-h^J*

- > Tracks within $\Delta \eta = \pm 1$ from the jet axis of any jets with $p_{\rm T}^{\rm G} > 15$ GeV are dropped.
- > NoJets: Events do not have a single jet with $p_{\rm T}^{\rm G} > 15~{\rm GeV}$
- > WithJets: Events with at least one jet with $p_{\rm T}^{\rm G} > 15~{\rm GeV}$

Selections

- *h-h*
- h^{UE}-h^{UE} AllEvents
- h^{UE}-h^{UE} NoJets
- h^{UE}-h^{UE} WithJets
- *h^{UE}-h^J*
- Jet particles:
 - \succ Jet $p_{\rm T}^{\rm G}>40$ GeV, $|\eta|<2.1$
 - > Require balance jet with $p_{\rm T}^{\rm G}$ > 15 GeV and $|\Delta \phi| > 5\pi/6$ to reduce non-flow effects in 2PC
 - Apply isolation to remove potential distortion of 2PC

Two-particle Correlations

- 2PC for *h-h* (left), *h^{UE}-h^{UE}* NoJets (middle), *h^{UE}-h^{UE}* WithJets (right)
- Charged particle multiplicity is measured excluding jet constituents
 - Ensure the event activity is not biased by the presence of jets
 - Only reflects the soft multiplicity in the event
- Template-fit is used to extract v_2
- Near-side ridges are observed in h^{UE}-h^{UE}

Two-particle Correlations

- *h^{UE}-h^J* 2PC for different multiplicity bins
- No ridge is observed in the 2PC for any multiplicity interval

Template-fit v₂

- The v_2 values are observed to vary weakly with multiplicity
 - Rejecting particles associated with jet in the pp collisions has negligible impact
- $h^{UE}-h^J v_2$ consistent with zero within uncertainties
 - Both multiplicity dependent and $p_{\rm T}$ dependent
 - Ridge is not related to jets

Conclusions

- In pp collision, jet $p_{\rm T}$ are biased by event modulation in the UE
 - The bias is suppressed by applying a $p_{\rm T}$ threshold to jet constituents
- Absence or presence of jets in pp collision does not impact v_2
- $h^{UE}-h^{J}$ 2PC v_2 consistent with zero
 - Hard scattering and soft collectivity are unrelated

ATLAS, arXiv:2303.17357, Submitted to PRL

Conclusions

- In pp collision, jet $p_{\rm T}$ are biased by event modulation in the UE
 - The bias is suppressed by applying a $p_{\rm T}$ threshold to jet constituents
- Absence or presence of jets in pp collision does not impact v_2
- $h^{UE}-h^{J}$ 2PC v_2 consistent with zero
 - Hard scattering and soft collectivity are unrelated
- Previous analysis in p+Pb show correlations between jet particles and the UE
 - ~0.02 v_2 at p_T > 8 GeV region in p+Pb
 - Maybe due to physics-related factor
 - Different techniques used with different $p_{\rm T}$ range
- Further studies are needed to understand the difference

Multiplicity distribution

Event plane resolution

• Calculated using sub-event method with particle-flow objects 1 unit in eta away from $p_{\rm T}^{\rm G}$ > 15 GeV jets

<u>Two-particle Correlations with different $p_{\rm T}$ bins</u>

Crosscheck of $p_{\rm T}^{\rm G}$ threshold

- *h^{UE}-h^J* v₂ obtained using three different p_T^G threshold
 p_T^G > 35 GeV, p_T^G > 40 GeV, p_T^G > 50 GeV
- No $p_{\rm T}^{\rm G}$ dependence observed
- Results are consistent with each other and consistent with zero

vs original jet $p_{\rm T}$

- Comparison of $p_{\rm T}^{\rm G}$ to original jet $p_{\rm T}$ in data (left) and PYTHIA 8 (right)
- Low multiplicity events are used as UE bias is negligible
- Fits are consistent between data and MC