Measurement of the Sensitivity of Two-Particle Correlations in pp Collisions to the Presence of Hard Scatterings

Pengqi Yin, Columbia University, For the ATLAS Collaboration

This work was supported by the United States Department of Energy Grant DOE-FG02-86ER-40281
Ridge in small system

Collective flow

Arise from collective behavior?
Artifact of semi-hard processes?
Method

• Jets are reconstructed using particle-flow algorithm (Eur. Phys. J. C 77 (2017) 466)
 • $p_T > 15$ GeV, $|\eta| < 4.5$
 • Excluding particles within $|\Delta \eta| < 1$ of jets

• Measure 2PC
 • between two tracks not associated with jets
 • $h^{UE}_1 - h^{UE}_2$
Method

• Jets are reconstructed using particle-flow algorithm ([Eur. Phys. J. C 77 (2017) 466](https://doi.org/10.1140/epjc/s10052-017-4951-4))
 - $p_T > 15$ GeV, $|\eta| < 4.5$
 - Excluding particles within $|\Delta\eta| < 1$ of jets

• Measure 2PC
 • between two tracks not associated with jets
 - $h^{UE-h^{UE}}$: (requiring the presence or absence of jets)
 • between tracks that are constituents of jets and tracks from the UE
 - h^{UE-h^J}
Problem

- From previous studies, we know there is a global **modulation** due to elliptic flow. **Not fluctuation!**
 - Particles from this flow mainly have low p_T.
 - Around 0 and π, more particles due to the modulation.
 - When a jet appear around 0 or π, reconstruction will catch more of these UE particles.
- The modulation provides a bias on jet p_T

<table>
<thead>
<tr>
<th>Hard S</th>
<th>Collectivity</th>
<th>< 4 GeV</th>
<th>> 4 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pengqi Yin, IS 2023, 21 Jun 2023
Problem

- The UE bias was studied by overlying PYTHIA8 event onto pp minimum-bias data
 - PYTHIA8 with MPI off and ISR on
- A strong modulation of jet yield vs $\phi^{\text{jet}} - \Psi_{2}^{\text{Data}}$ is observed
 - Event plane angle Ψ_{2}^{Data} is measured in the pp data before overlay
 - ϕ^{jet} is reconstructed taking particles from data and PYTHIA together, after overlay
Problem

- After trying a number of grooming and correction methods, the best suppression of UE bias was obtained by introducing a minimum p_T on jet constituents.

- The jet p_T is redefined by summing constituents above 4 GeV: $p_T^{G} = \sum_{constituents} p_T > 4 \text{ GeV}$.
Selections

• $h-h$
• $h^{UE}-h^{UE}$ AllEvents
• $h^{UE}-h^{UE}$ NoJets
• $h^{UE}-h^J$
Selections

- $h-h$
- $h^{\text{UE}}-h^{\text{UE}}$ AllEvents
- $h^{\text{UE}}-h^{\text{UE}}$ NoJets
- $h^{\text{UE}}-h^{J}$

- Tracks within $\Delta\eta = \pm 1$ from the jet axis of any jets with $p_T^G > 15$ GeV are dropped.
- NoJets: Events do not have a single jet with $p_T^G > 15$ GeV
- WithJets: Events with at least one jet with $p_T^G > 15$ GeV
Selections

- $h-h$
- $h^{UE}-h^{UE} \text{ AllEvents}$
- $h^{UE}-h^{UE} \text{ NoJets}$
- $h^{UE}-h^{UE} \text{ WithJets}$
- $h^{UE}-h^J$

- Jet particles:
 - Jet $p_T^G > 40$ GeV, $|\eta| < 2.1$
 - Require balance jet with $p_T^G > 15$ GeV and $|\Delta \phi| > 5\pi/6$ to reduce non-flow effects in 2PC
 - Apply isolation to remove potential distortion of 2PC
Two-particle Correlations

- 2PC for $h-h$ (left), $h^{UE}-h^{UE}$ NoJets (middle), $h^{UE}-h^{UE}$ WithJets (right)
- Charged particle multiplicity is measured excluding jet constituents
 - Ensure the event activity is not biased by the presence of jets
 - Only reflects the soft multiplicity in the event
- Template-fit is used to extract v_2
- Near-side ridges are observed in $h^{UE}-h^{UE}$
Two-particle Correlations

- $h^{\text{UE}} - h^J$ 2PC for different multiplicity bins
- No ridge is observed in the 2PC for any multiplicity interval
Template-fit \(v_2 \)

- The \(v_2 \) values are observed to vary weakly with multiplicity
 - Rejecting particles associated with jet in the \(pp \) collisions has negligible impact
- \(h^{\text{UE}}-h^{J} \) \(v_2 \) consistent with zero within uncertainties
 - Both multiplicity dependent and \(p_T \) dependent
 - Ridge is not related to jets
Conclusions

• In pp collision, jet p_T are biased by event modulation in the UE
 • The bias is suppressed by applying a p_T threshold to jet constituents
• Absence or presence of jets in pp collision does not impact v_2
 • $h^{UE} - h^J$ 2PC v_2 consistent with zero
 • Hard scattering and soft collectivity are unrelated
Conclusions

- In pp collision, jet p_T are biased by event modulation in the UE
 - The bias is suppressed by applying a p_T threshold to jet constituents
- Absence or presence of jets in pp collision does not impact v_2
 - $h^{UE}-h^J$ 2PC v_2 consistent with zero
 - Hard scattering and soft collectivity are unrelated
- Previous analysis in p+Pb show correlations between jet particles and the UE
 - $\sim 0.02 \ v_2$ at $p_T > 8$ GeV region in p+Pb
 - Maybe due to physics-related factor
 - Different techniques used with different p_T range
- Further studies are needed to understand the difference
Backup
Multiplicity distribution

ATLAS

$pp \sqrt{s}=13$ TeV, 15.8 pb$^{-1}$
Event plane resolution

- Calculated using sub-event method with particle-flow objects 1 unit in eta away from $p_T^{G} > 15$ GeV jets
Two-particle Correlations with different p_T bins

ϕ, Δ:

- $1<\phi<1.5$ GeV
- $1<\phi<3$ GeV
- $1<\phi<6$ GeV

ATLAS

$pp \sqrt{s}=13$ TeV, 15.8 pb$^{-1}$

$2<|\Delta\eta|<5$, $0.5<\phi<4$ GeV

$40\leq N_{\text{ch}}^{\text{rec,corr}}<150$

$|\Delta\phi|<5$

$C(\Delta\phi)$

$G+FC_{\text{periph}}(\Delta\phi)$

Fit

$C_{\text{ridge}}^{\text{periph}}(\Delta\phi)+FC_{\text{periph}}(0)$

$C_{\text{ridge}}^{\text{periph}}(\Delta\phi)+FC(0)$

$2<p_T^\text{h}<40$ GeV

$4<p_T^\text{h}<6$ GeV

$|\Delta\phi|<4$ GeV

$0.5<p_T^\text{h}<150$

$|\eta^\text{h}|<4$ GeV

$|\Delta\phi|<5$

$C_{\text{periph}}^{\text{FC}}(0)$

$C_{\text{periph}}^{\text{FC}}(0)+G(0)$

$C_{\text{periph}}^{\text{FC}}(0)+G(0)$

$N_{\text{ch}}^{\text{rec,corr}}\leq 40$

$C_{\text{periph}}^{\text{FC}}(0)+G(0)$

$C_{\text{periph}}^{\text{FC}}(0)+G(0)$

$C_{\text{periph}}^{\text{FC}}(0)+G(0)$

$C_{\text{periph}}^{\text{FC}}(0)+G(0)$

$C_{\text{periph}}^{\text{FC}}(0)+G(0)$
Crosscheck of p_T^G threshold

- $h^{UE}-h^J \nu_2$ obtained using three different p_T^G threshold
 - $p_T^G > 35$ GeV, $p_T^G > 40$ GeV, $p_T^G > 50$ GeV
- No p_T^G dependence observed
- Results are consistent with each other and consistent with zero
p_T^G vs original jet p_T

- Comparison of p_T^G to original jet p_T in data (left) and PYTHIA 8 (right)
- Low multiplicity events are used as UE bias is negligible
- Fits are consistent between data and MC