

$Bjorken\,flow\,attractors\\and\,2+1D\,flow\,observables$

V. E. Ambruș¹, S. Schlichting², C. Werthmann³

¹West University of Timișoara, Romania, ²Bielefeld University, Germany, ³University of Wrocław, Poland

Problem statement

- The hot QGP formed in heavy-ion collisions exhibits collective behaviour.
- Hydro is successful at capturing observables such as particle multiplicities, elliptic flow,...
- Problem 1: System is far from eq. when $\tau \to 0$.
- Problem 2: For pp, pPb, OO, the system size is small.
- Question: Can hydro work far from equilibrium?
- To answer, we take conformal kinetic theory (KT) in the relaxation time approximation (RTA) as a baseline and look at comparisons with hydro.

Problem setup

• System described via

$$f(\tau, \mathbf{x}_{\perp}, \eta, \mathbf{p}_{\perp}, y) = \frac{(2\pi)^3}{\nu_{\text{eff}}} \frac{dN}{d^3 x d^3 p} (\tau, \mathbf{x}_{\perp}, \eta, \mathbf{p}_{\perp}, y),$$

with $\nu_{\text{eff}} = 2(N_c^2 - 1) + \frac{7}{8} \times 4N_cN_f = 42.25$.

• f evolves according to the Boltzmann eq.,

$$p^{\mu}\partial_{\mu}f = -\frac{p^{\mu}u_{\mu}}{\tau_{R}}(f - f_{eq}), \quad f_{eq} = \frac{1}{e^{p^{\mu}u_{\mu}/T} - 1},$$

where $\tau_R = 5T^{-1}\eta/s$ and $\eta/s = \text{const.}$

• Assuming boost invariance, transverse homogeneity in f and initially vanishing P_L , evolution depends only on $\epsilon_0(\mathbf{x}_{\perp})$ and **opacity** $\hat{\gamma}$ [1],

$$\hat{\gamma} = \left(5\frac{\eta}{s}\right)^{-1} \left(\frac{R}{a\pi} \frac{dE_{\perp}^{(0)}}{d\eta}\right)^{1/4}, \qquad a = \frac{\pi^2}{30} \nu_{\text{eff}}.$$

0+1-D Bjorken flow

- For $\tau \ll R$, system behaves as 0 + 1-D Bjorken flows.
- Noneq. effects measured by $\text{Re}^{-1} = \sqrt{6\pi^{\mu\nu}\pi_{\mu\nu}/\epsilon^2}$, which depends only on $\tilde{w} = \tau T/(4\pi\eta/s)$.
- Energy density admits a universal scaling function, $\tau^{4/3}\epsilon = (\tau^{4/3}\epsilon)_{\infty}\mathcal{E}(\tilde{w})$, with

$$\mathcal{E}(\tilde{w}) \simeq \begin{cases} C_{\infty}^{-1} \tilde{w}^{\gamma}, & \tilde{w} \ll 1, \\ 1 - \frac{2}{3\pi\tilde{w}}, & \tilde{w} \gg 1, \end{cases} \qquad (\tau^{4/3} \epsilon)_{\infty} = \text{const.},$$

while $\gamma = 4/9 \ (0.526)$ and $C_{\infty} \simeq 0.88 \ (0.80)$ for KT (hydro).

• Hydro and KT agree when $\tilde{w} \gtrsim 1 \Leftrightarrow \text{Re}^{-1} \lesssim 0.4$.

Early-time evolution

• Using $\epsilon = aT^4$, $\tilde{w} = \frac{\tau T}{4\pi n/s}$ and $\mathcal{E}(\tilde{w} \ll 1) = C_{\infty}^{-1}\tilde{w}$, we find

$$\tilde{w}_{\text{early}} \simeq \left[\frac{\tau^{2/3}}{C_{\infty}^{1/4}} (\tau^{-\frac{2}{3}} \tilde{w})_{\infty} \right]^{1/(1-\frac{\gamma}{4})}, \quad (\tau^{-2/3} \tilde{w})_{\infty} = \frac{(\tau^{4/3} \epsilon)_{\infty}^{1/4}}{a^{1/4} 4\pi \eta/s}.$$

• When $\tilde{w}_0 \ll 1$, the asymptotic eq. state can be correlated to the initial state via

$$(\tau^{4/3}\epsilon)_{\infty} \simeq C_{\infty} \left(\frac{4\pi\eta}{s}a^{1/4}\right)^{\gamma} \left(\tau_0^{(\frac{4}{3}-\gamma)/(1-\gamma/4)}\epsilon_0\right)^{1-\gamma/4}.$$

- In KT, $(\tau^{4/3}\epsilon)_{\infty}^{\text{KT}} \simeq C_{\infty}^{\text{KT}} \left(\frac{4\pi\eta}{\epsilon}a^{1/4}\right)^{4/9} (\tau_0\epsilon_0)^{8/9}$.
- In hydro, $(\tau^{4/3}\epsilon)_{\infty}^{\text{hydro}} \simeq C_{\infty}^{\text{hydro}} \left(\frac{4\pi\eta}{s}a^{1/4}\right)^{0.526} (\tau_0^{0.93}\epsilon_0)^{0.868}$.

Transverse plane observables

- Consider now ICs corresp. to PbPb at $\sqrt{s_{NN}} = 5.02$ TeV.
- If hydro and KT use the same ICs, at late times hydro overestimates energy:

$$\frac{(\tau^{4/3}\epsilon)_{\infty}^{\text{KT}}}{(\tau^{4/3}\epsilon)_{\infty}^{\text{hydro}}} \simeq \frac{C_{\infty}^{\text{KT}}}{C_{\infty}^{\text{hydro}}} \tilde{w}_{0}^{\gamma_{\text{hydro}} - \gamma_{\text{KT}}} \simeq 1.1 \times \tilde{w}_{0}^{0.082}.$$

• Late-time agreement $(\tau^{4/3}\epsilon)_{\infty}^{\text{KT}} = (\tau^{4/3}\epsilon)_{\infty}^{\text{hydro}}$ achieved if hydro ICs are **scaled** [1, 2]:

• Local inhomogeneities lead to inhomogeneous cooling, affecting the eccentricity ϵ_2 .

Final-state observables [3]

- Naïve hydro (unscaled) overestimates $dE_{\rm tr}/d\eta$ and understimates ε_p .
- At low $\hat{\gamma}$, scaled hydro no longer works, as equilibration is interrupted by transv. exp.
- In this study, hydro loses applicability when $\hat{\gamma} \lesssim 4$ [2].
- Hybrid schemes, where hydro takes over from KT at threshold Re⁻¹ can improve over scaled hydro [1, 2]: See poster by C. Werthmann!

References

- [1] VEA, S. Schlichting, C. Werthmann, Phys. Rev. D **107** (2023) 094013.
- [2] VEA, S. Schlichting, C. Werthmann, Phys. Rev. Lett. **130** (2023) 152301.
- [3] V. E. Ambruş, S. Schlichting and C. Werthmann, [arXiv:2302.10618 [nucl-th]].