

A dynamically initialized hybrid approach with varying equations of state

Renan Hirayama¹², Zuzana Paulínyová²³, and Hannah Elfner¹²⁴

¹Helmholtz Research Academy Hesse (HFHF), GSI Helmholtz Center, Max-von-Laue-Str. 12, 60438 Frankfurt am Main

²Frankfurt Institute for Advanced Studies (FIAS), Ruth-Moufang-Straße 1, 60438 Frankfurt am Main

³Faculty of Science, P. J. Šafárik University, Košice, Slovakia

⁴GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt

Initialization of hybrid models

• In high beam energy heavy ion collisions, the traditional initialization for hydrodynamics is at the crossing of iso- τ hypersurface. A common choice is the passing time

$$\tau_0 = 2m_N \frac{R_{\rm proj} + R_{\rm targ}}{\sqrt{s_{\rm NN} - 4m_N^2}}$$

- Centrality determination makes core-corona (dense-dilute) separation necessary
- Low energies \rightarrow nonequilibrium, secondary interactions, larger nuclei passing time

Dynamic fluidization

• Goal: dynamical condition for fluidization based on local energy density

SMASH

Simulating Many Strongly-interacting Hadrons

• Evolve hadrons according to the Boltzmann equation [1]

 $p^{\mu}\partial_{\mu}f_{i} + m_{i}F^{\alpha}\partial_{\alpha}^{p}f_{i} = C_{i}^{\text{coll}}$

- Particle in energetic enough region \rightarrow fluidization
- Following [2], only hadronic or string decay products ?
- Threshold condition determined at production, but fluidization happens at formation time
- Background from fluid T^{00} not included yet

VHLLE

viscous Harten-Lax-van Leer-Einfeldt algorithm

- Israel-Stewart equations of motion with viscosity [3]
- Matching time steps with transport requires Cartesian coordinates
- Fluidized particles enter as *smeared* sources (Z. Paulínyová's poster)

No particlization yet

- At lower energies, fluidization happens way before $\tau_0 \blacklozenge$
- As the beam energy increases, so does the energy of particles entering hydro; more important sources are closer to the iso- au_0 hypersurface igsimedelta• Spread depends on threshold energy and formation time 🥲

Central cell evolution

Energy density profiles

- Au+Au collisions with b = 0
- Threshold $\epsilon_f = 0.5 \,\mathrm{GeV/fm}^3$

• Viscosity $\eta/s = 0.2, \ \zeta/s = 0$

• Smearing parameter $\sigma = 1 \text{ fm}$

- ↓ faster expansion?
- Small difference between EoS: ε includes compression energy
- Fast beams expand away quickly
- Contribution depends on which particles are chosen to fluidize

Fluid velocities

- Larger $v_x(x), v_v(y)$ for stiffer EoS with phase transition
- Off-diagonal larger for softer chiral EoS
- Longitudinal flow $v_z(z)$ is indifferent to EoS
- Asymmetric transverse plane: fluctuations ?
- Relatively small statistic (25 events), but same ICs

Outlook

• Allow different particles to fluidize

• Vary threshold energy and formation time

• Communication between energy density backgrounds for concurrent evolution

• Particle sampling to compute observables

• Radial and anisotropic flow may be sensitive to EoS and phase transition

References

[1] J. Weil, et al., PRC 94.5 (2016) 054905.

[2] Y. Akamatsu, et al., PRC 98.2 (2018) 024909.

[3] Iu. Karpenko, P. Huovinen, and M. Bleicher, Comput. Phys. Commun. 185.11 (2014) 3016-3027.

[4] J. Steinheimer, S. Schramm, and H. Stöcker. J. Phys. G 38.3 (2011) 035001.

[5] P.F. Kolb, J. Sollfrank, and U. Heinz, PRC 62.5 (2000) 054909.

ET_EX TikZposter