Mini-jet quenching in non-equilibrium quark-gluon plasma

Jasmine Brewer, Aleksas Mazeliauskas, Fabian Zhou

Institut für Theoretische Physik, Universität Heidelberg, D-69120 Heidelberg, Germany,

zhou@thphys.uni-heidelberg.de

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

1. Motivation

- Interactions between the Quark Gluon Plasma (QGP) and hard partons lead to the phenomenon of *jet quenching*.
- *Kinetic theory* describes the equilibration of the far-from-equilibrium state.
 - \rightarrow approach to hydrodynamics

Study of mini-jets thermalizing in the non-eq. plasma [1]

2. Effective kinetic theory of QCD [2]

Boost invariant transport equation for phase space distribution $f(\tau, \mathbf{p})$ of different particle species:

$$\left(\partial_{\tau} - \frac{p_z}{\tau}\partial_{p_z}\right)f(\tau, \mathbf{p}) = -C[f]$$

4. Angular dependent equilibration

Equilibrated jets \rightarrow increase in temperature T

$$\Leftrightarrow \delta f_{\rm eq}(p) = \partial_T f_{\rm eq}\left(\frac{p}{T}\right) \delta T$$

Mini-jets in medium

Leading order (in $\lambda = N_c g^2$) elastic and inelastic processes

 $C[f](\mathbf{p}) = C_{2\leftrightarrow 2}[f](\mathbf{p}) + C_{1\leftrightarrow 2}[f](\mathbf{p})$

Inelastic processes produce thermal distributions along each slice in $\theta \Rightarrow$ temperature $T(\theta)$.

 θ -dependent moments of δf_{Jet}

$$I_n(\theta) \equiv 4\pi \int \frac{p^2 dp}{(2\pi)^3} p^n f(p,\theta) = \mathcal{N}_n \times T(\theta)^{n+3}$$

Defines angular dependent temperature $\overline{T} + \delta T(\theta)$ \rightarrow agrees for all n and θ in equilibrium

6. Chemical equilibration of jets

Initially highly occupied gluons produce quarks while thermalizing \rightarrow in equilibrium more quark d.o.f. [4].

Initialize gluon jet $\delta f_q(\tau_0, \mathbf{p})$, while setting $\delta f_q(\tau_0, \mathbf{p}) = 0$.

3. Initial conditions: i) Thermal

5. Initial conditions: ii) Anisotropic

Jet on top of non-equilibrium background, longitudinally expanding

Study the hydrodynamization of the jet: comparison of its time evolution to an azimuthally symmetric perturbation.

Conclusions & Outlook

static QGP:

- Radiation leads to thermal distributions with $T(\theta)$.
- Elastic processes build up early velocity field (not shown).

expanding QGP:

- Mini-jet hydrodynamize later than the background.
- With expansion, chemical equilibration is reached before isotropization.

Outlook

- get parametric estimates of equilibration time scales
- jet response functions \rightarrow phenomenology
- transverse dynamics \rightarrow small systems

References

During intermediate times, the evolution of the jet perturbation can be described by a scaling solution [3].

Y. Mehtar-Tani, S. Schlichting, I. Soudi, JHEP05(2023)091.

P. Arnold, G. D. Moore, L. G. Yaffe, JHEP01(2003)030. [2]

[3] A. Kurkela, E. Lu, Phys. Rev. Lett. **113**, no. 18, 182301 (2014).

[4] A. Kurkela and A. Mazeliauskas, Phys. Rev. Lett. 122, 142301 (2019), Phys. Rev. D 99, no. 5, 054018 (2019).

Acknowledgements

This work is supported in part by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) project number 496831614 (A.M., F.Z.).

